
CVPR 2020 Tutorial:
Towards Annotation-Efficient Learning

Few-Shot Learning Methods

https://annotation-efficient-learning.github.io/

Spyros Gidaris

https://annotation-efficient-learning.github.io/

Agenda

 Introduction

 Main types of few-shot algorithms

 Few-shot learning without forgetting

Agenda

 Introduction

 Few-shot learning

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning

 Few-shot learning without forgetting

Few-shot learning

 Have you seen before an okapi?

 Can you learn to recognize it from only this image?

Few-shot learning

 Humans: able to learn new concepts using few training examples

 Goal of few-shot learning: mimic this ability with machine learning methods

Few-shot before the deep learning “revolution”

 “One-shot learning of simple visual concepts”, Lake et al. 11

 “One-Shot Learning with a Hierarchical Nonparametric Bayesian Model”, Salakhutdinov et al. 12

 “A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories”, Fei Fei et al. 13

 “Human-level concept learning through probabilistic program induction”, Lake et al. 15

Here we will focus on deep learning based methods

Formally: Learn N-way K-shot classification tasks

 N = number of classes

 K = training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

Example: 5-way 1-shot classification task

Formally: Learn N-way K-shot classification tasks

 N = number of classes

 K = training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

Example: 5-way 1-shot classification task

Question: is this possible with deep learning-based models?

Train directly a deep learning model

 Train from scratch a classification network

 Overfit to training data  poor accuracy on test data 

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

Overcome data scarcity with transfer learning

Overcome data scarcity with transfer learning

 Recipe followed by all few-shot learning methods

Overcome data scarcity with transfer learning

1. Acquire knowledge: train on other similar problems

2. Transfer knowledge: adapt to the problem of interest

Overcome data scarcity with transfer learning

1. Acquire knowledge: use many training data from some base classes

2. Transfer knowledge: adapt to novel classes with few training data

Overcome data scarcity with transfer learning

no overlap between them
base classes == train classes

novel classes == test classes

Common transfer learning example: Fine-tuning

1. Acquire knowledge: pre-train a network on the base class data

2. Transfer knowledge: fine-tune the network on novel class data

Few-shot learning methods

Fine-tuning: risk of overfitting in case of extremely limited data (few-shot)

Goal of few-shot learning: devise transfer learning algorithms that would work
well in the few-shot scenario, e.g., metric learning, meta-learning methods, …

Agenda

 Introduction

 Few-shot learning problem

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

Few-shot meta-learning

Most (but not all) few-shot methods use meta-learning (learn-to-learn paradigm)
 “Evolutionary principles in self-referential learning, or on learning how to learn”, Schmidhuber 1987

 “Meta-neural networks that learn by learning”, Naik et al. 1992

 “Lifelong learning algorithms”, Thrun 1998

 “Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

 …

What is few-shot meta-learning?

Few-shot classification

 input: labeled support data, unlabeled query data

 intermediate output: model for classifying the query images

 output: predicted query labels

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

Few-shot classification

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on learning few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽 (somehow)

 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

backward backward

generate predict

must back-propagate the entire few-shot learning process

How to train the meta-learner?

 Train it on the same conditions it will be used in 2nd learning stage (meta-test)

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

 Construct such training episodes using the base class data

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

 Construct such training episodes using the base class data

 by sampling N classes x (K support examples + M query examples)

Meta-learning: training time (1st learning stage)

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Episode (S,Q): support set 𝑆 = 𝑥𝑘
𝑆, 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾
and query set 𝑄 = 𝑥𝑚

𝑄
, 𝑦𝑚

𝑄

𝑚=1

𝑁∗𝑀

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Inner part: generate using the support set S the classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Outer part: optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = 𝐿 𝑚𝜑, 𝑄

Meta-learning: training time (1st learning stage)

Objective:

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝒎𝝋 = 𝒇𝜽(𝑺)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for each 𝒙𝒎

𝑸
in 𝑸

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜽 w.r.t. the queries classification loss 𝑳 𝒇𝜽(𝑺), 𝑸

 e.g., cross entropy loss σ𝒎−𝒍𝒐𝒈(𝒑𝒎[𝒚𝒎
𝑸
])

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜽 w.r.t. the queries classification loss 𝑳 𝒇𝜽(𝑺), 𝑸
 must back-propagate through the few-shot learning process

Meta-learning: training time (1st learning stage)

Meta-learning: test time (2nd learning stage)

meta-learner at test time:

 remains fixed (typically)

 generates a model for novel classes

From Supervised Learning to Meta-Learning

 training  meta-training

 test time  meta-test time

 mini-batch of images  mini-batch of few-shot episodes

 training data  meta-training data = all possible training episodes

 test data  meta-test data = test episodes

Few-shot learning vs Meta-learning

Few-shot learning:

 Any transfer learning method that targets on transferring well with limited data

 E.g.: pre-train + fine-tuning, or using metric learning, or using meta-learning

Meta-learning:

 Learn the learning algorithm itself
 “Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

 Ingredient of many few-shot algorithms,

 Also used in multi-task learning, RL, …

Agenda

 Introduction

 Few-shot learning problem

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

How to evaluate few-shot algorithms

2nd learning stage (meta-test time for meta-learning):

 Use a held out set of classes

 Sample a large number of N-way K-shot few-shot tasks

 Report average accuracy on the N x M query examples of all tasks

Train / Support examples Test / Query examples

Example of 5-way 1-shot test task

How to evaluate few-shot algorithms

Datasets / benchmarks

Also: tiered-MiniImageNet (Ren et. al. 18), CIFAR-FS (Bertinetto et al 19), CUB, Tracking in the wild (Valmadre et al. 18), …

Omniglot: Lake et al. 11

 1623 characters from 50 alphabets

 20 instances per character / class

 5-way and 20-way 1-shot or 5-shot tasks

MiniImageNet: Ravi et al. 17

 84x84 sized images

 100 classes: 64 train, 16 val, 20 test

 1-shot 5-way & 5-shot 5-way tasks

ImageNet-FS: Hariharan et al. 17

 normal ImageNet images

 classes: 389 train, 300 val, 311 test

 311-way 1, 2, 5, 10, or 20 shot tasks

 more realistic & challenging setting

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Disclaimer: loose categorization, many combine elements of several types, not exhaustive enumeration

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Metric learning for few-shot classification

 1st learning stage: train a deep metric function on the base class data

 2nd learning stage: use it as a nearest neighbor classifier to novel classes

 Non-parametric at this stage

 Simple and works well with limited data

Siamese neural networks

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015

Siamese network:

 Given two images: outputs a similarity / distance score.

 Similarity score: 1 if the two image belong to the same class, 0 otherwise

CNN

CNN

Compare
Score: 1

(the same class)

Siamese neural networks

1st learning stage – verification task:

Learn with a siamese convnet if 2 images
belong to same / different classes.

2nd stage (convnet is fixed):

Classify query to most similar support image

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015

Metric learning

Extensive work on (deep) metric learning:
 “Neighborhood Component Analysis”, Goldberger et. al. 05

 “Dimensionality Reduction by Learning an Invariant Mapping”, Hadsell et. al. 06

 “Distance Metric Learning for Large Margin Nearest Neighbor Classification”, Weinberger et. al. 09

 “Deep Metric Learning Using Triplet Network”, Hoffer et. al. 15

 “Web-Scale Training for Face Identification”, Taigman et. al. 15

 “FaceNet: A Unified Embedding for Face Recognition and Clustering”, Schroff et al 15

 …

Meta-training based metric learning

Train the metric model on the same way it would be used at 2nd learning stage
 “Matching Networks for one-shot learning”, O. Vinyals et al. 16

Matching Networks

 Learn to match

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

Similarities of 𝒙𝑸 with 𝒙𝒌
𝑺:

𝑎 𝑥𝑄 [𝑘] =
exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑘

𝑆

σ𝑗
𝑁∗𝐾 exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑗

𝑆

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Classification probabilities for 𝒙𝑸:

𝑝 = 𝑚𝜑 𝑥𝑄 =෍
𝑘
𝑎 𝑥𝑄 [𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

Similarities of 𝒙𝑸 with 𝒙𝒌
𝑺:

𝑎 𝑥𝑄 [𝑘] =
exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑘

𝑆

σ𝑗
𝑁∗𝐾 exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑗

𝑆

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

 Meta-learner 𝒇𝜽: feature extractor 𝐹𝜃(∙)

 Generated model 𝒎𝝋: extractor 𝐹𝜃(∙) with support features 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

= σ𝑘 𝑎 𝑥𝑚
𝑄
[𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

= σ𝑘 𝑎 𝑥𝑚
𝑄
[𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Metric learning:

better results than pre-training & fine-tuning

 Meta-training:

improves over siamese networks

Matching Networks

K > 1 support example per class:

 Independently matches a query with each support example

 Can we do something smarter?

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Prototypical Networks

“Prototypical Networks for Few-Shot Learning”, Snell et al. 2017

𝒙𝑸
Query

Feature space

 Learn to extract class prototypes for comparisons:

 prototype: aggregates information of all support images in a class

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|
෍

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖
 K=1: the same as matching networks

𝒙𝑸
Query

Feature space

𝑐𝑖 =
1

|𝑆𝑖|
෍

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

Prototypical Networks

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

Distance dist ∙,∙ : Euclidean or cosine

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|
෍

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

Prototypes: similar to output weights of

a classification network with bias = 0

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|
෍

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

During meta-training (optimizing 𝐹𝜃):

back-propagate through the prototypes too

Meta-training in Prototypical Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝑐𝑖 𝑖=1
𝑁

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

=
exp −dist 𝐹𝜃 𝑥𝑄 ,𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 ,𝑐𝑗

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

𝒙𝑸

Query

Feature space

Meta-training in Prototypical Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝑐𝑖 𝑖=1
𝑁

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

=
𝑒𝑥𝑝 −𝑑𝑖𝑠𝑡 𝐹𝜃 𝑥𝑄 ,𝑐𝑖

σ𝑗
𝑁 𝑒𝑥𝑝 −𝑑𝑖𝑠𝑡 𝐹𝜃 𝑥𝑄 ,𝑐𝑗

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

𝒙𝑸

Query

Feature space

Prototypical Networks

For K>1 shots per class: prototype vectors with Euclidean distance have better

accuracy than individual comparison with each support example (Matching Nets)

Meta-training based metric learning

Implement distance function in prototypical nets with a relation network
“Learning to Compare: Relation Network for Few-Shot Learning”, Sung et. al. 18

Propagate with a GNN information from the labeled support set to the query

“Few-shot Learning with Graph Neural Networks”, Garcia et al. 18

Task-adaptive metric function based on task-context representations

“TADAM: Task dependent adaptive metric for improved few-shot learning”,

Oreshkin et. al. 18

Learn to synthesize additional support examples for the metric function

“Low-shot learning from

imaginary data”, Wang et.al. 18
“Image deformation meta-networks

for one-shot learning”, Chen et.al. 19

Meta-training based metric learning

 In general: simple and effective methods

 But, meta-training can be bothersome:

 Train a different metric function for each possible K or N

 For small N  training with easy examples

 Not all methods follow this rule, but then, how to tune N, K and M?

Meta-training based metric learning

 In general: simple and effective methods

 But, meta-training can be bothersome

 Train metric function on the same way it will be used 

 Train a different metric function for each possible K or N

 Not all methods follow this rule, then

 How to tune K or N?

 How to choose M (# query examples) for meta-training

 Is meta-training really necessary for learning good features?

Cosine distance based classification network

 Train typical classification network: feature extractor + classification head

 Classification head: replace dot-product (i.e., linear layer) with cosine distance

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

Image source (modified):

W. Chen et. al. 2019

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 2018

“Low-Shot Learning with Imprinted Weights”, Qi et al. 2018

novel class weightsbase class weights

Why distance based classification head?

Enforces similar behavior as metric learning models:

 Given an image, the learned feature must maximize (minimize) cosine
similarity with weight vector of the correct class (incorrect classes)

Why distance-based classification head?

Enforces similar behavior as metric learning models

 Learn features with reduced intra-class variance 

 Better generalization to novel classes

Source:
Gidaris et al. 2018

Cosine distance based classification network

 1st learning stage: standard training using the base class data

 Trains the extractor 𝒇𝜽 and classification weights 𝑾𝒃 of base classes

 Much simpler than meta-training based metric methods

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

novel class weightsbase class weights

Image source (modified):

Chen et al. 2019

Cosine distance based classification network

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

 2nd stage: fix extractor 𝒇𝜽 + “learn” only the classification weights 𝑊𝑛:

 compute 𝑊𝑛 with prototypical feature averaging

novel class weightsbase class weights

𝑤𝑖 =
1

|𝑆𝑖|
෍

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝑓𝜃 𝑥𝑘
𝑆 , ∀ 𝑤𝑖 ∈ 𝑊𝑛

Image source (modified):

Chen et al. 2019

Table 1: 5-way accuracies on MiniImageNet.

Table 2: 311-way accuracies on ImageNet-FS for K=1, 2, 5, 10, or 20 examples per novel class.

K

Cosine classifier

Source: “Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simpler training with better results

than Matching and Prototypical Nets

Cosine classifier

Dense (cosine-based) classification & implanting new task-specific layers
“Dense classification and implanting for few-shot learning”, Lifchitz et al. 19

Learn an ensemble of cosine classifiers

“Diversity with cooperation: ensemble methods for few-shot
classification”, Dvornik et al. 18

Learn to predict class prototypes for pre-trained cosine classifiers

Gidaris et al. 18, Gidaris et al. 19

Learn to predict class prototypes for cosine classifiers leveraging

word embedding based knowledge graphs Peng et al. 19

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Meta-learning with memory modules

 Few-shot classification:

 input: labeled support data, unlabeled query data

 intermediate step: generate model

 output: predicted query labels

Meta-learning with memory modules

 Few-shot classification:

 input: labeled support data, unlabeled query data

 intermediate step: generate model  store support data to memory

 output: predicted query labels by accessing the memory

Treats few-shot classification as a “black box” prediction problem

Meta-learning with memory modules

“A Simple Neural Attentive Meta-Learner”,

Mishra et al. 18

“Meta-Learning with Memory-Augmented Neural

Networks”, Santoro et al. 16

“Meta Networks”,

Munkhdalai et al. 17

Example: Simple Neural Attentive Meta-Learner

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18

 Few-shot as a sequence labeling task:

 Given past labeled images, what is the label of the current query image

Meta-learner 𝒇𝜽

Query example without label

Example: Simple Neural Attentive Meta-Learner

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18

 Meta-learner implementation:

 Temporal convolutions: aggregates past information

 Attentional Module: pinpoints to query-specific past information
 “Attention is all you need”, Vaswani et al. 17

Temporal

Convolution

Attentional

Module

Temporal

Convolution

Temporal

Conv. Module Attention Module

Meta-learning with memory modules

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(∙ |𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Meta-learning with memory modules

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆

3. Predict classification scores 𝒑𝒎 𝒎 = 𝒇𝜽 {𝒙𝒎
𝑸

𝒎
|𝑺) for all queries

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(∙ |𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

store & access

support data with

a memory module

Meta-learning with memory modules

 More generic than metric learning methods

 applicable to other learning problems: regression, RL, …

 More data hungry (for training the meta-learner)

 More computational expensive

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Optimization-based meta-learning

Key idea: few-shot classification as a parameters optimization problem

 “Optimization as a Model for Few-Shot Learning”, Ravi et al. 17

Here we will focus on MAML: “Model-Agnostic Meta-Learning”, Finn et al. 17

MAML: Optimization-based meta-learning

Fine-tuning: start from 𝜽 and optimize w.r.t. training loss 𝐿 𝜃, 𝑆 using gradient steps:

𝝋 ← 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺

𝝋: parameters of novel class model 𝒎𝝋

Fine-tuning with limited data: requires “good” pre-trained parameters 𝜽

(to simplify the description: only the 1st step)

MAML: Optimization-based meta-learning

Fine-tuning: start from 𝜽 and optimize w.r.t. training loss 𝐿 𝜃, 𝑆 using gradient steps:

𝝋 ← 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺

𝝋: parameters of novel class model 𝒎𝝋

Fine-tuning with limited data: requires “good” pre-trained parameters 𝜽

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

(to simplify the description: only the 1st step)

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

inner optimization:

Fine-tunes 𝜃 for the task using the support data 𝑺

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

outer optimization:

minimizes w.r.t. 𝜽 all the task-specific classification losses of the query data 𝑸

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑺): 𝒎𝝋=𝜽−𝜶 𝜵𝜽𝑳 𝜽,𝑺

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝒑𝒎 = 𝒎𝝋 𝒙𝒎
𝑸

for each query 𝒙𝒎
𝑸

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜽 w.r.t. the loss on query data 𝑸:

𝜽 ← 𝜽 − 𝜷 𝜵𝜽𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜽 w.r.t. the loss on query data 𝑸:

𝜽 ← 𝜽 − 𝜷 𝜵𝜽𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

Meta-training in MAML

back-propagate through gradient descent

 2nd order gradients w.r.t. 𝜃

MAML: Optimization based meta-learning

optimal parameters of training tasks

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

before meta-training

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

before meta-training

after meta-training:

 𝜽 closer to optimal parameters

 good for fine-tuning to them

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

෍

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

MAML: Optimization based meta-learning

 Consistent with the standard fine-tuning procedure

 Model-agnostic: can accommodate any network architecture

 Applicable to other problems: regression, RL, …

 2nd order gradients: computationally and memory expensive

 Difficult to train large models

 Need to train a different meta-learner for each N (classes) and K (shots)

Optimization based meta-learning

 “Optimization as a Model for Few-Shot Learning”, Ravi et al. 17

 Learns the gradient descent step with an LSTM

 Actually precedes MAML

 MAML with only 1st order derivatives for meta-learning 𝜽
 “Model-Agnostic Meta-Learning”, Finn et al. 17

 “On first-order meta-learning algorithms”, Nichol et al.18

 “Meta-SGD: Learning to quickly learn for few-shot learning”, Li et al. 17

 “Meta-learning with implicit gradients”, Rajeswaran et al. 19

 “Meta-learning with warped gradient descent”, Flennerhag et al. 20

 Optimize low-dimensional latent task embedding (hybrid method):

 “Meta-learning with latent embedding optimization”, Rusu et al. 19

 Meta-learning with closed-form / convex solvers (for output-classification layer):

 ridge/logistic regression: “Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19

 support vector machine: “Meta-learning with differentiable convex optimization”, Lee et al. 19

Meta-learning with differentiable convex optimization

Key idea: meta-learn good features for SVM linear classifiers

Linear SVM solver

“Meta-learning with differentiable convex optimization”, Lee et al. 19

Meta-learning with differentiable closed-form solvers

Key idea: meta-learn good features for closed-form solvers for the output layer of the classification network

 Ridge-regression or logistic regression

Ridge-regression solver

“Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Usually, a small subset of model parameters:

 Predict diagonal of factorized weights:
 “Learning feed-forward one-shot learners”, Bertinetto et al.16

 Predict weights of classification head
 “Learning to model the tail”, Wang et al. 17

Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Here focus:

 predicting the weights of the classification head

 in the context of the “few-shot learning without forgetting” problem

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Few-shot learning without forgetting

Typical few-shot models:

 focus on learning novel classes with limited data

 but “forget” the initial base classes 

 “forget”: worse than base class models or unable to recognize base classes

Few-shot learning without forgetting

 In contrast, practical applications often require:

 to extend base classes with novels ones using few training data

 and without re-training on the full dataset (base+novel)

 “Few-shot learning without forgetting” targets this problem

 combines elements from both incremental and few-shot learning

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization-based meta-learning

 Learn to predict classification weights

 Few-shot learning without forgetting

The description of the “Learn to predict classification weights” methods is in

the context of the “few-shot learning without forgetting” setting.

Learn to generate classification weights

 Pre-trained network: feature extractor + cosine classification head

 Extend with parameter-generating function:

 outputs: new weights for the novel classes

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Few-Shot Image Recognition by Predicting Parameters from Activations”, Qiao et al. 18

“Learning to model the tail”, Wang et al. 17

Learn to generate classification weights

 Important to use cosine classification head:

 𝑳𝟐-normalize weights: all classes have same 𝑳𝟐 norms

 avoids class imbalance: biasing towards classes with bigger 𝑳𝟐norms

 Easier to add novel weights  unified recognition of both type of classes

Learn to generate classification weights

 Important to use cosine classification head:

 Beneficial in the traditional incremental learning setting as well:
 “Learning a unified classifier incrementally via rebalancing”, Hou et al. 19

 “Memory efficient incremental through feature adaptation” Iscen et al. 20

Learn to generate classification weights

Source: “Low-Shot Learning with Imprinted Weights”, Qi et al. 18

Novel

class
Base

classes

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Generate classification model 𝒎𝝋 = 𝒇𝜽(𝑺)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜽 w.r.t. the query classification loss 𝑳 𝒇𝜽(𝑺), 𝑸 = σ𝒎−𝒍𝒐𝒈(𝒑𝒎[𝒚𝒎
𝑸
])

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜃 w.r.t. the query classification loss, e.g.: 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode:

 randomly choose some base classes as “fake” novel

 𝑆: examples from the “fake” novel classes

 𝑄: examples form both “fake” novel and remaining base

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for both “fake” novel and base classes

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for both “fake” novel and base classes

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Generate weights with prototypical feature averaging

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simplest case:

 𝑺𝒊: support set of 𝑖-th novel class

 novel weight = average feature vector of 𝑺𝒊: 𝑤𝑖
𝑎𝑣𝑔

=
1

|𝑆𝑖|
σ

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖
𝐹𝜃 𝑥𝑘

𝑆

Generate weights with prototypical feature averaging

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simplest case:

 𝑺𝒊: support set of 𝑖-th novel class

 novel weight = average feature vector of 𝑺𝒊: 𝑤𝑖
𝑎𝑣𝑔

=
1

|𝑆𝑖|
σ

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖
𝐹𝜃 𝑥𝑘

𝑆

No meta-learning here

Correlations between classification weights

Many classes are semantically / visually related:

 Correlations between their classification weights

 Exploit those correlations for generating novel class weights?

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝑵𝒃: number of base classes

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, S. Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝑵𝒃: number of base classes

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝒂(𝑺𝒊)[𝒃]: average similarity of support features with base class weight 𝑤𝑏

 Computed with cosine + softmax

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 Final novel weight: 𝒘𝒊
𝒂𝒕𝒕 combined with prototypical averaging weight 𝒘𝒊

𝒂𝒗𝒈

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 Nodes = classes

 Edges = each class connected to top most similar classes

 More expressive than a single layer attention mechanism

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 Nodes = classes

 Edges = each class connected to top most similar classes

 More expressive than a single layer attention mechanism

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 DAE: reconstructs initial (noisy) prototypical averaging weights

 Meta-training here can be data hungry

 injecting noise during meta-training  regularize meta-training

Few-shot learning without forgetting

Source: “Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 18

Exploiting inter-class correlations (attention, GNN) leads to better performance

Learn to generate classification weights

 (Almost) simple training:

 Single classification network, standard supervised pre-training

 Meta-training: only for the parameter generating module

 More flexible: unified recognition of both base and novel classes

 Same test speed as typical classification networks

 The parameter generating module might be data hungry

 Constrained by quality of pre-trained representations

 Similar to metric learning based methods

Learning Weights with Attention Attractor Networks

“Incremental Few-Shot Learning with Attention Attractor Networks”, Ren et al. 19

Optimization-based meta-learning with dynamic regularization:

𝑊 = min
𝑊

CrossEntropyLoss 𝑆,𝑊 +෍

𝑖

R(𝑤𝑖 − 𝑤𝑖
𝑎𝑡𝑡)

 The meta-learner is trained to predict (using 𝑆𝑖) priors 𝑤𝑖
𝑎𝑡𝑡 so that the optimized weights 𝑊 would

minimize the classification loss on the query set 𝑄

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

 Final notes

Final notes

 Few-shot visual learning is important

Final notes

 Few-shot visual learning is important

 But, common few-shot benchmarks are insufficient
 Omniglot: saturated

 MiniImageNet: with proper tuning all methods achieve similar results, not realistic

Final notes

 Few-shot visual learning is important

 But, common few-shot benchmarks are insufficient
 Omniglot: saturated

 MiniImageNet: with enough tuning all methods achieve similar results, not realistic setting

 More realistic benchmarks:
 “Low-shot Visual Recognition by Shrinking and Hallucinating Features”, Hariharan et al. 17

 “Few-Shot Learning with Localization in Realistic Settings”, Wertheimer et al. 19

 “Large-Scale Long-Tailed Recognition in an Open World”, Liu et al. 19

 “Meta-Dataset: A dataset for datasets for learning to learn from few examples”,
Triantafillou et al. 19

A Closer Look to Few-Shot Classification

“A Closer Look to Few-shot classification”,

Chen et al. 19

 Meta-learning algorithms and network designs of growing complexity, but

 Well-tuned baselines: often on par / better than SoTA meta-learning methods

 Baselines: scale better with deeper backbones

Baseline:

pre-training + fine-tuning last layer

Baseline++:

cosine classifier

A different direction

Focus on pre-training richer representations

 Representations that know more about the world can adapt better

 Leveraging self-supervision (see next talk by Relja and Andrey)

“Boosting few-shot visual learning with self-supervision”,

Gidaris et al. 19

““When does self-supervision improve few-shot learning?”,

Su et al. 19

“Learning generalizable representations via diverse supervision”, Pang et al. 19

Also:

“Charting the right manifold: manifold mixup for few-shot learning”, Mangla et al. 20

“Rethinking few-shot image classification: a good embedding is all you need?”, Tian et al. 20

Not covered because of time constraints

 Semi-supervised few-shot / meta learning:
 “Low-shot learning with large-scale diffusion”, Douze et al. 18

 “Meta-learning for semi-supervised few-shot classification”, Triantafillou et al. 18

 Few-shot / meta learning with noise labels:
 “Graph convolutional networks for learning with few clean and many noisy labels”, Iscen et al 20

 Learning with imbalanced datasets (many-shot and few-shot classes):
 “Learning to model the tail”, Wang et al. 17

 “Large-scale long-tailed recognition in an open world”, Liu et al. 19

 “Decoupling representation and classifier for long-tailed recognition”, Kang et al. 20

 Few-shot learning beyond image classification:
 “Few-shot object detection via feature reweighting”, Kang et al. 19

 “Meta-learning to detect rare objects”, Wang et al. 19

 “Few-shot semantic segmentation with prototype learning”, Dong et al. 18

 “PANet: Few-shot image semantic segmentation with prototype alignment”, Wang et al. 19

 “Tracking by Instance Detection: A Meta-Learning Approach”, Wang et al. 20

 …

The end

