
CVPR 2020 Tutorial:
Towards Annotation-Efficient Learning

Few-Shot Learning Methods

https://annotation-efficient-learning.github.io/

Spyros Gidaris

https://annotation-efficient-learning.github.io/

Agenda

 Introduction

 Main types of few-shot algorithms

 Few-shot learning without forgetting

Agenda

 Introduction

 Few-shot learning

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning

 Few-shot learning without forgetting

Few-shot learning

 Have you seen before an okapi?

 Can you learn to recognize it from only this image?

Few-shot learning

 Humans: able to learn new concepts using few training examples

 Goal of few-shot learning: mimic this ability with machine learning methods

Few-shot before the deep learning “revolution”

 “One-shot learning of simple visual concepts”, Lake et al. 11

 “One-Shot Learning with a Hierarchical Nonparametric Bayesian Model”, Salakhutdinov et al. 12

 “A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories”, Fei Fei et al. 13

 “Human-level concept learning through probabilistic program induction”, Lake et al. 15

Here we will focus on deep learning based methods

Formally: Learn N-way K-shot classification tasks

 N = number of classes

 K = training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

Example: 5-way 1-shot classification task

Formally: Learn N-way K-shot classification tasks

 N = number of classes

 K = training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

Example: 5-way 1-shot classification task

Question: is this possible with deep learning-based models?

Train directly a deep learning model

 Train from scratch a classification network

 Overfit to training data poor accuracy on test data

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

Overcome data scarcity with transfer learning

Overcome data scarcity with transfer learning

 Recipe followed by all few-shot learning methods

Overcome data scarcity with transfer learning

1. Acquire knowledge: train on other similar problems

2. Transfer knowledge: adapt to the problem of interest

Overcome data scarcity with transfer learning

1. Acquire knowledge: use many training data from some base classes

2. Transfer knowledge: adapt to novel classes with few training data

Overcome data scarcity with transfer learning

no overlap between them
base classes == train classes

novel classes == test classes

Common transfer learning example: Fine-tuning

1. Acquire knowledge: pre-train a network on the base class data

2. Transfer knowledge: fine-tune the network on novel class data

Few-shot learning methods

Fine-tuning: risk of overfitting in case of extremely limited data (few-shot)

Goal of few-shot learning: devise transfer learning algorithms that would work
well in the few-shot scenario, e.g., metric learning, meta-learning methods, …

Agenda

 Introduction

 Few-shot learning problem

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

Few-shot meta-learning

Most (but not all) few-shot methods use meta-learning (learn-to-learn paradigm)
 “Evolutionary principles in self-referential learning, or on learning how to learn”, Schmidhuber 1987

 “Meta-neural networks that learn by learning”, Naik et al. 1992

 “Lifelong learning algorithms”, Thrun 1998

 “Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

 …

What is few-shot meta-learning?

Few-shot classification

 input: labeled support data, unlabeled query data

 intermediate output: model for classifying the query images

 output: predicted query labels

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

Few-shot classification

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on learning few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Learning

algorithm

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽 (somehow)

 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

generate predict

Few-shot classification with meta-learning

 Train the learning algorithm (instead of the classification model)

 Implement it with a meta-learner 𝒇𝜽
 Optimize 𝒇𝜽 on solving few-shot classification tasks (learn-to-learn)

Model

𝒎ഥ𝝋

Meta-learner

𝒇𝜽

Okapi Lion Camel Horse Lama ? ?

query

classifications

Train / Support examples Test / Query examples

backward backward

generate predict

must back-propagate the entire few-shot learning process

How to train the meta-learner?

 Train it on the same conditions it will be used in 2nd learning stage (meta-test)

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

 Construct such training episodes using the base class data

Meta-learning: training time (1st learning stage)

How to train the meta-learner?

 Train meta-learner 𝒇𝜽 on solving a distribution of few-shot tasks (aka episodes)

 Construct such training episodes using the base class data

 by sampling N classes x (K support examples + M query examples)

Meta-learning: training time (1st learning stage)

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Episode (S,Q): support set 𝑆 = 𝑥𝑘
𝑆, 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾
and query set 𝑄 = 𝑥𝑚

𝑄
, 𝑦𝑚

𝑄

𝑚=1

𝑁∗𝑀

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Inner part: generate using the support set S the classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

Meta-learning: training time (1st learning stage)

Objective:

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝒇𝜽(𝑺), 𝑸

Outer part: optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = 𝐿 𝑚𝜑, 𝑄

Meta-learning: training time (1st learning stage)

Objective:

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝒎𝝋 = 𝒇𝜽(𝑺)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for each 𝒙𝒎

𝑸
in 𝑸

4. Optimize 𝜃 w.r.t. the queries classification loss 𝐿 𝑓𝜃(𝑆), 𝑄

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜽 w.r.t. the queries classification loss 𝑳 𝒇𝜽(𝑺), 𝑸

 e.g., cross entropy loss σ𝒎−𝒍𝒐𝒈(𝒑𝒎[𝒚𝒎
𝑸
])

Meta-learning: training time (1st learning stage)

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
) for each 𝑥𝑚

𝑄
in 𝑄

4. Optimize 𝜽 w.r.t. the queries classification loss 𝑳 𝒇𝜽(𝑺), 𝑸
 must back-propagate through the few-shot learning process

Meta-learning: training time (1st learning stage)

Meta-learning: test time (2nd learning stage)

meta-learner at test time:

 remains fixed (typically)

 generates a model for novel classes

From Supervised Learning to Meta-Learning

 training meta-training

 test time meta-test time

 mini-batch of images mini-batch of few-shot episodes

 training data meta-training data = all possible training episodes

 test data meta-test data = test episodes

Few-shot learning vs Meta-learning

Few-shot learning:

 Any transfer learning method that targets on transferring well with limited data

 E.g.: pre-train + fine-tuning, or using metric learning, or using meta-learning

Meta-learning:

 Learn the learning algorithm itself
 “Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

 Ingredient of many few-shot algorithms,

 Also used in multi-task learning, RL, …

Agenda

 Introduction

 Few-shot learning problem

 Meta-learning paradigm

 How to evaluate

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

How to evaluate few-shot algorithms

2nd learning stage (meta-test time for meta-learning):

 Use a held out set of classes

 Sample a large number of N-way K-shot few-shot tasks

 Report average accuracy on the N x M query examples of all tasks

Train / Support examples Test / Query examples

Example of 5-way 1-shot test task

How to evaluate few-shot algorithms

Datasets / benchmarks

Also: tiered-MiniImageNet (Ren et. al. 18), CIFAR-FS (Bertinetto et al 19), CUB, Tracking in the wild (Valmadre et al. 18), …

Omniglot: Lake et al. 11

 1623 characters from 50 alphabets

 20 instances per character / class

 5-way and 20-way 1-shot or 5-shot tasks

MiniImageNet: Ravi et al. 17

 84x84 sized images

 100 classes: 64 train, 16 val, 20 test

 1-shot 5-way & 5-shot 5-way tasks

ImageNet-FS: Hariharan et al. 17

 normal ImageNet images

 classes: 389 train, 300 val, 311 test

 311-way 1, 2, 5, 10, or 20 shot tasks

 more realistic & challenging setting

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Disclaimer: loose categorization, many combine elements of several types, not exhaustive enumeration

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Metric learning for few-shot classification

 1st learning stage: train a deep metric function on the base class data

 2nd learning stage: use it as a nearest neighbor classifier to novel classes

 Non-parametric at this stage

 Simple and works well with limited data

Siamese neural networks

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015

Siamese network:

 Given two images: outputs a similarity / distance score.

 Similarity score: 1 if the two image belong to the same class, 0 otherwise

CNN

CNN

Compare
Score: 1

(the same class)

Siamese neural networks

1st learning stage – verification task:

Learn with a siamese convnet if 2 images
belong to same / different classes.

2nd stage (convnet is fixed):

Classify query to most similar support image

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015

Metric learning

Extensive work on (deep) metric learning:
 “Neighborhood Component Analysis”, Goldberger et. al. 05

 “Dimensionality Reduction by Learning an Invariant Mapping”, Hadsell et. al. 06

 “Distance Metric Learning for Large Margin Nearest Neighbor Classification”, Weinberger et. al. 09

 “Deep Metric Learning Using Triplet Network”, Hoffer et. al. 15

 “Web-Scale Training for Face Identification”, Taigman et. al. 15

 “FaceNet: A Unified Embedding for Face Recognition and Clustering”, Schroff et al 15

 …

Meta-training based metric learning

Train the metric model on the same way it would be used at 2nd learning stage
 “Matching Networks for one-shot learning”, O. Vinyals et al. 16

Matching Networks

 Learn to match

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

Similarities of 𝒙𝑸 with 𝒙𝒌
𝑺:

𝑎 𝑥𝑄 [𝑘] =
exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑘

𝑆

σ𝑗
𝑁∗𝐾 exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑗

𝑆

𝐹𝜃

𝐹𝜃

Matching Networks

 Learn to match

 Extract features from the query and support images

 Classify with differentiable (soft) nearest neighbor classifier

“Matching networks for one shot learning”, Vinyals et al. 2016

Classification probabilities for 𝒙𝑸:

𝑝 = 𝑚𝜑 𝑥𝑄 =
𝑘
𝑎 𝑥𝑄 [𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

Feature

extractor

Similarities of 𝒙𝑸 with 𝒙𝒌
𝑺:

𝑎 𝑥𝑄 [𝑘] =
exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑘

𝑆

σ𝑗
𝑁∗𝐾 exp cos 𝐹𝜃 𝑥𝑄 ,𝐹𝜃 𝑥𝑗

𝑆

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

 Meta-learner 𝒇𝜽: feature extractor 𝐹𝜃(∙)

 Generated model 𝒎𝝋: extractor 𝐹𝜃(∙) with support features 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

= σ𝑘 𝑎 𝑥𝑚
𝑄
[𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Meta-training in Matching Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝐹𝜃 𝑥𝑘
𝑆 , 𝑦𝑘

𝑆
𝑘=1

𝑁∗𝐾

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

= σ𝑘 𝑎 𝑥𝑚
𝑄
[𝑘] ∙ 𝑜𝑛𝑒_ℎ𝑜𝑡(𝑦𝑘

𝑆)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Matching Networks

 Metric learning:

better results than pre-training & fine-tuning

 Meta-training:

improves over siamese networks

Matching Networks

K > 1 support example per class:

 Independently matches a query with each support example

 Can we do something smarter?

“Matching networks for one shot learning”, Vinyals et al. 2016

Support

images 𝑺

Query 𝒙𝑸∈ 𝑸

feature

extractor

𝐹𝜃

𝐹𝜃

Prototypical Networks

“Prototypical Networks for Few-Shot Learning”, Snell et al. 2017

𝒙𝑸
Query

Feature space

 Learn to extract class prototypes for comparisons:

 prototype: aggregates information of all support images in a class

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖
 K=1: the same as matching networks

𝒙𝑸
Query

Feature space

𝑐𝑖 =
1

|𝑆𝑖|

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

Prototypical Networks

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

Distance dist ∙,∙ : Euclidean or cosine

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

Prototypes: similar to output weights of

a classification network with bias = 0

Prototypical Networks

𝑐𝑖 =
1

|𝑆𝑖|

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝐹𝜃 𝑥𝑘
𝑆

 Classify to closest prototype with prob.

𝑝[𝑖] = 𝑚𝜑 𝑥𝑄 [𝑖] =
exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 , 𝑐𝑗

 prototype 𝒊-th class = mean training feature vector of its support set 𝑆𝑖

𝒙𝑸
Query

Feature space

During meta-training (optimizing 𝐹𝜃):

back-propagate through the prototypes too

Meta-training in Prototypical Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝑐𝑖 𝑖=1
𝑁

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

=
exp −dist 𝐹𝜃 𝑥𝑄 ,𝑐𝑖

σ𝑗
𝑁 exp −dist 𝐹𝜃 𝑥𝑄 ,𝑐𝑗

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

𝒙𝑸

Query

Feature space

Meta-training in Prototypical Networks

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆 = 𝐹𝜃 ∙ , 𝑐𝑖 𝑖=1
𝑁

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

=
𝑒𝑥𝑝 −𝑑𝑖𝑠𝑡 𝐹𝜃 𝑥𝑄 ,𝑐𝑖

σ𝑗
𝑁 𝑒𝑥𝑝 −𝑑𝑖𝑠𝑡 𝐹𝜃 𝑥𝑄 ,𝑐𝑗

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

𝒙𝑸

Query

Feature space

Prototypical Networks

For K>1 shots per class: prototype vectors with Euclidean distance have better

accuracy than individual comparison with each support example (Matching Nets)

Meta-training based metric learning

Implement distance function in prototypical nets with a relation network
“Learning to Compare: Relation Network for Few-Shot Learning”, Sung et. al. 18

Propagate with a GNN information from the labeled support set to the query

“Few-shot Learning with Graph Neural Networks”, Garcia et al. 18

Task-adaptive metric function based on task-context representations

“TADAM: Task dependent adaptive metric for improved few-shot learning”,

Oreshkin et. al. 18

Learn to synthesize additional support examples for the metric function

“Low-shot learning from

imaginary data”, Wang et.al. 18
“Image deformation meta-networks

for one-shot learning”, Chen et.al. 19

Meta-training based metric learning

 In general: simple and effective methods

 But, meta-training can be bothersome:

 Train a different metric function for each possible K or N

 For small N training with easy examples

 Not all methods follow this rule, but then, how to tune N, K and M?

Meta-training based metric learning

 In general: simple and effective methods

 But, meta-training can be bothersome

 Train metric function on the same way it will be used

 Train a different metric function for each possible K or N

 Not all methods follow this rule, then

 How to tune K or N?

 How to choose M (# query examples) for meta-training

 Is meta-training really necessary for learning good features?

Cosine distance based classification network

 Train typical classification network: feature extractor + classification head

 Classification head: replace dot-product (i.e., linear layer) with cosine distance

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

Image source (modified):

W. Chen et. al. 2019

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 2018

“Low-Shot Learning with Imprinted Weights”, Qi et al. 2018

novel class weightsbase class weights

Why distance based classification head?

Enforces similar behavior as metric learning models:

 Given an image, the learned feature must maximize (minimize) cosine
similarity with weight vector of the correct class (incorrect classes)

Why distance-based classification head?

Enforces similar behavior as metric learning models

 Learn features with reduced intra-class variance

 Better generalization to novel classes

Source:
Gidaris et al. 2018

Cosine distance based classification network

 1st learning stage: standard training using the base class data

 Trains the extractor 𝒇𝜽 and classification weights 𝑾𝒃 of base classes

 Much simpler than meta-training based metric methods

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

novel class weightsbase class weights

Image source (modified):

Chen et al. 2019

Cosine distance based classification network

Standard dot-product based classifier Cosine distance based classifier

1st learning stage 2nd learning stage

 2nd stage: fix extractor 𝒇𝜽 + “learn” only the classification weights 𝑊𝑛:

 compute 𝑊𝑛 with prototypical feature averaging

novel class weightsbase class weights

𝑤𝑖 =
1

|𝑆𝑖|

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖

𝑓𝜃 𝑥𝑘
𝑆 , ∀ 𝑤𝑖 ∈ 𝑊𝑛

Image source (modified):

Chen et al. 2019

Table 1: 5-way accuracies on MiniImageNet.

Table 2: 311-way accuracies on ImageNet-FS for K=1, 2, 5, 10, or 20 examples per novel class.

K

Cosine classifier

Source: “Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simpler training with better results

than Matching and Prototypical Nets

Cosine classifier

Dense (cosine-based) classification & implanting new task-specific layers
“Dense classification and implanting for few-shot learning”, Lifchitz et al. 19

Learn an ensemble of cosine classifiers

“Diversity with cooperation: ensemble methods for few-shot
classification”, Dvornik et al. 18

Learn to predict class prototypes for pre-trained cosine classifiers

Gidaris et al. 18, Gidaris et al. 19

Learn to predict class prototypes for cosine classifiers leveraging

word embedding based knowledge graphs Peng et al. 19

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Meta-learning with memory modules

 Few-shot classification:

 input: labeled support data, unlabeled query data

 intermediate step: generate model

 output: predicted query labels

Meta-learning with memory modules

 Few-shot classification:

 input: labeled support data, unlabeled query data

 intermediate step: generate model store support data to memory

 output: predicted query labels by accessing the memory

Treats few-shot classification as a “black box” prediction problem

Meta-learning with memory modules

“A Simple Neural Attentive Meta-Learner”,

Mishra et al. 18

“Meta-Learning with Memory-Augmented Neural

Networks”, Santoro et al. 16

“Meta Networks”,

Munkhdalai et al. 17

Example: Simple Neural Attentive Meta-Learner

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18

 Few-shot as a sequence labeling task:

 Given past labeled images, what is the label of the current query image

Meta-learner 𝒇𝜽

Query example without label

Example: Simple Neural Attentive Meta-Learner

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18

 Meta-learner implementation:

 Temporal convolutions: aggregates past information

 Attentional Module: pinpoints to query-specific past information
 “Attention is all you need”, Vaswani et al. 17

Temporal

Convolution

Attentional

Module

Temporal

Convolution

Temporal

Conv. Module Attention Module

Meta-learning with memory modules

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(∙ |𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

Meta-learning with memory modules

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃 𝑆

3. Predict classification scores 𝒑𝒎 𝒎 = 𝒇𝜽 {𝒙𝒎
𝑸

𝒎
|𝑺) for all queries

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(∙ |𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

store & access

support data with

a memory module

Meta-learning with memory modules

 More generic than metric learning methods

 applicable to other learning problems: regression, RL, …

 More data hungry (for training the meta-learner)

 More computational expensive

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Optimization-based meta-learning

Key idea: few-shot classification as a parameters optimization problem

 “Optimization as a Model for Few-Shot Learning”, Ravi et al. 17

Here we will focus on MAML: “Model-Agnostic Meta-Learning”, Finn et al. 17

MAML: Optimization-based meta-learning

Fine-tuning: start from 𝜽 and optimize w.r.t. training loss 𝐿 𝜃, 𝑆 using gradient steps:

𝝋 ← 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺

𝝋: parameters of novel class model 𝒎𝝋

Fine-tuning with limited data: requires “good” pre-trained parameters 𝜽

(to simplify the description: only the 1st step)

MAML: Optimization-based meta-learning

Fine-tuning: start from 𝜽 and optimize w.r.t. training loss 𝐿 𝜃, 𝑆 using gradient steps:

𝝋 ← 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺

𝝋: parameters of novel class model 𝒎𝝋

Fine-tuning with limited data: requires “good” pre-trained parameters 𝜽

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

(to simplify the description: only the 1st step)

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

inner optimization:

Fine-tunes 𝜃 for the task using the support data 𝑺

MAML: Optimization-based meta-learning

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

outer optimization:

minimizes w.r.t. 𝜽 all the task-specific classification losses of the query data 𝑸

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑺): 𝒎𝝋=𝜽−𝜶 𝜵𝜽𝑳 𝜽,𝑺

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝒑𝒎 = 𝒎𝝋 𝒙𝒎
𝑸

for each query 𝒙𝒎
𝑸

4. Outer optimization: optimize 𝜃 w.r.t. the loss on query data 𝑄:

𝜃 ← 𝜃 − 𝛽 𝛻𝜃𝐿 𝜃 − 𝛼 𝛻𝜃𝐿 𝜃, 𝑆 , 𝑄

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜽 w.r.t. the loss on query data 𝑸:

𝜽 ← 𝜽 − 𝜷 𝜵𝜽𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

Meta-training in MAML

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Inner optimization (fine-tune using train data 𝑆): 𝑚𝜑=𝜃−𝛼 𝛻𝜃𝐿 𝜃,𝑆

3. Predict classification scores 𝑝𝑚 = 𝑚𝜑 𝑥𝑚
𝑄

for each query 𝑥𝑚
𝑄

4. Outer optimization: optimize 𝜽 w.r.t. the loss on query data 𝑸:

𝜽 ← 𝜽 − 𝜷 𝜵𝜽𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

Meta-training in MAML

back-propagate through gradient descent

 2nd order gradients w.r.t. 𝜃

MAML: Optimization based meta-learning

optimal parameters of training tasks

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

before meta-training

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

before meta-training

after meta-training:

 𝜽 closer to optimal parameters

 good for fine-tuning to them

MAML: meta-learn 𝜽 so that it transfers well via fine-tuning

𝒎𝒊𝒏
𝜽

(𝑺,𝑸)

𝑳 𝜽 − 𝜶 𝜵𝜽𝑳 𝜽, 𝑺 , 𝑸

MAML: Optimization based meta-learning

MAML: Optimization based meta-learning

 Consistent with the standard fine-tuning procedure

 Model-agnostic: can accommodate any network architecture

 Applicable to other problems: regression, RL, …

 2nd order gradients: computationally and memory expensive

 Difficult to train large models

 Need to train a different meta-learner for each N (classes) and K (shots)

Optimization based meta-learning

 “Optimization as a Model for Few-Shot Learning”, Ravi et al. 17

 Learns the gradient descent step with an LSTM

 Actually precedes MAML

 MAML with only 1st order derivatives for meta-learning 𝜽
 “Model-Agnostic Meta-Learning”, Finn et al. 17

 “On first-order meta-learning algorithms”, Nichol et al.18

 “Meta-SGD: Learning to quickly learn for few-shot learning”, Li et al. 17

 “Meta-learning with implicit gradients”, Rajeswaran et al. 19

 “Meta-learning with warped gradient descent”, Flennerhag et al. 20

 Optimize low-dimensional latent task embedding (hybrid method):

 “Meta-learning with latent embedding optimization”, Rusu et al. 19

 Meta-learning with closed-form / convex solvers (for output-classification layer):

 ridge/logistic regression: “Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19

 support vector machine: “Meta-learning with differentiable convex optimization”, Lee et al. 19

Meta-learning with differentiable convex optimization

Key idea: meta-learn good features for SVM linear classifiers

Linear SVM solver

“Meta-learning with differentiable convex optimization”, Lee et al. 19

Meta-learning with differentiable closed-form solvers

Key idea: meta-learn good features for closed-form solvers for the output layer of the classification network

 Ridge-regression or logistic regression

Ridge-regression solver

“Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Usually, a small subset of model parameters:

 Predict diagonal of factorized weights:
 “Learning feed-forward one-shot learners”, Bertinetto et al.16

 Predict weights of classification head
 “Learning to model the tail”, Wang et al. 17

Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Here focus:

 predicting the weights of the classification head

 in the context of the “few-shot learning without forgetting” problem

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization based meta-learning

 Learn to predict model parameters

 Few-shot learning without forgetting

Few-shot learning without forgetting

Typical few-shot models:

 focus on learning novel classes with limited data

 but “forget” the initial base classes

 “forget”: worse than base class models or unable to recognize base classes

Few-shot learning without forgetting

 In contrast, practical applications often require:

 to extend base classes with novels ones using few training data

 and without re-training on the full dataset (base+novel)

 “Few-shot learning without forgetting” targets this problem

 combines elements from both incremental and few-shot learning

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Metric learning

 Meta-learning with memory modules

 Optimization-based meta-learning

 Learn to predict classification weights

 Few-shot learning without forgetting

The description of the “Learn to predict classification weights” methods is in

the context of the “few-shot learning without forgetting” setting.

Learn to generate classification weights

 Pre-trained network: feature extractor + cosine classification head

 Extend with parameter-generating function:

 outputs: new weights for the novel classes

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Few-Shot Image Recognition by Predicting Parameters from Activations”, Qiao et al. 18

“Learning to model the tail”, Wang et al. 17

Learn to generate classification weights

 Important to use cosine classification head:

 𝑳𝟐-normalize weights: all classes have same 𝑳𝟐 norms

 avoids class imbalance: biasing towards classes with bigger 𝑳𝟐norms

 Easier to add novel weights unified recognition of both type of classes

Learn to generate classification weights

 Important to use cosine classification head:

 Beneficial in the traditional incremental learning setting as well:
 “Learning a unified classifier incrementally via rebalancing”, Hou et al. 19

 “Memory efficient incremental through feature adaptation” Iscen et al. 20

Learn to generate classification weights

Source: “Low-Shot Learning with Imprinted Weights”, Qi et al. 18

Novel

class
Base

classes

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑺, 𝑸)

2. Generate classification model 𝒎𝝋 = 𝒇𝜽(𝑺)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜽 w.r.t. the query classification loss 𝑳 𝒇𝜽(𝑺), 𝑸 = σ𝒎−𝒍𝒐𝒈(𝒑𝒎[𝒚𝒎
𝑸
])

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜃 w.r.t. the query classification loss, e.g.: 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode:

 randomly choose some base classes as “fake” novel

 𝑆: examples from the “fake” novel classes

 𝑄: examples form both “fake” novel and remaining base

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝑝𝑚 = 𝑚𝜑(𝑥𝑚
𝑄
)

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for both “fake” novel and base classes

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Meta-training in few-shot learning without forgetting

Meta-training routine:

1. Sample training episode (𝑆, 𝑄)

2. Generate classification model 𝑚𝜑 = 𝑓𝜃(𝑆)

3. Classification scores 𝒑𝒎 = 𝒎𝝋(𝒙𝒎
𝑸
) for both “fake” novel and base classes

4. Optimize 𝜃 w.r.t. the query classification loss 𝐿 𝑓𝜃(𝑆), 𝑄 = σ𝑚−𝑙𝑜𝑔(𝑝𝑚[𝑦𝑚
𝑄
])

incremental few-shot episode

ignore pre-trained base classification weights

of classes used as “fake” novel

Generate weights with prototypical feature averaging

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simplest case:

 𝑺𝒊: support set of 𝑖-th novel class

 novel weight = average feature vector of 𝑺𝒊: 𝑤𝑖
𝑎𝑣𝑔

=
1

|𝑆𝑖|
σ

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖
𝐹𝜃 𝑥𝑘

𝑆

Generate weights with prototypical feature averaging

“Low-Shot Learning with Imprinted Weights”, Qi et al. 18

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

Simplest case:

 𝑺𝒊: support set of 𝑖-th novel class

 novel weight = average feature vector of 𝑺𝒊: 𝑤𝑖
𝑎𝑣𝑔

=
1

|𝑆𝑖|
σ

𝑥𝑘
𝑆, 𝑦𝑘

𝑆 ∈𝑆𝑖
𝐹𝜃 𝑥𝑘

𝑆

No meta-learning here

Correlations between classification weights

Many classes are semantically / visually related:

 Correlations between their classification weights

 Exploit those correlations for generating novel class weights?

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝑵𝒃: number of base classes

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, S. Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝑵𝒃: number of base classes

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 𝒂(𝑺𝒊)[𝒃]: average similarity of support features with base class weight 𝑤𝑏

 Computed with cosine + softmax

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate classification weights with attention module

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

 Novel weight using attention over base weights 𝒘𝒃:

 Final novel weight: 𝒘𝒊
𝒂𝒕𝒕 combined with prototypical averaging weight 𝒘𝒊

𝒂𝒗𝒈

𝑤𝑖
𝑎𝑡𝑡 = σ𝑏=1

𝑁𝑏 𝑎(𝑆𝑖)[𝑏] ∙ 𝑤𝑏

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 Nodes = classes

 Edges = each class connected to top most similar classes

 More expressive than a single layer attention mechanism

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 Nodes = classes

 Edges = each class connected to top most similar classes

 More expressive than a single layer attention mechanism

Generate weights with a GNN Denoising AutoEncoder

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19

 Learning inter-class correlations with GNN based Denoising AutoEncoders

 DAE: reconstructs initial (noisy) prototypical averaging weights

 Meta-training here can be data hungry

 injecting noise during meta-training regularize meta-training

Few-shot learning without forgetting

Source: “Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 18

Exploiting inter-class correlations (attention, GNN) leads to better performance

Learn to generate classification weights

 (Almost) simple training:

 Single classification network, standard supervised pre-training

 Meta-training: only for the parameter generating module

 More flexible: unified recognition of both base and novel classes

 Same test speed as typical classification networks

 The parameter generating module might be data hungry

 Constrained by quality of pre-trained representations

 Similar to metric learning based methods

Learning Weights with Attention Attractor Networks

“Incremental Few-Shot Learning with Attention Attractor Networks”, Ren et al. 19

Optimization-based meta-learning with dynamic regularization:

𝑊 = min
𝑊

CrossEntropyLoss 𝑆,𝑊 +

𝑖

R(𝑤𝑖 − 𝑤𝑖
𝑎𝑡𝑡)

 The meta-learner is trained to predict (using 𝑆𝑖) priors 𝑤𝑖
𝑎𝑡𝑡 so that the optimized weights 𝑊 would

minimize the classification loss on the query set 𝑄

Agenda

 Introduction

 Main types of few-shot learning algorithms

 Few-shot learning without forgetting

 Final notes

Final notes

 Few-shot visual learning is important

Final notes

 Few-shot visual learning is important

 But, common few-shot benchmarks are insufficient
 Omniglot: saturated

 MiniImageNet: with proper tuning all methods achieve similar results, not realistic

Final notes

 Few-shot visual learning is important

 But, common few-shot benchmarks are insufficient
 Omniglot: saturated

 MiniImageNet: with enough tuning all methods achieve similar results, not realistic setting

 More realistic benchmarks:
 “Low-shot Visual Recognition by Shrinking and Hallucinating Features”, Hariharan et al. 17

 “Few-Shot Learning with Localization in Realistic Settings”, Wertheimer et al. 19

 “Large-Scale Long-Tailed Recognition in an Open World”, Liu et al. 19

 “Meta-Dataset: A dataset for datasets for learning to learn from few examples”,
Triantafillou et al. 19

A Closer Look to Few-Shot Classification

“A Closer Look to Few-shot classification”,

Chen et al. 19

 Meta-learning algorithms and network designs of growing complexity, but

 Well-tuned baselines: often on par / better than SoTA meta-learning methods

 Baselines: scale better with deeper backbones

Baseline:

pre-training + fine-tuning last layer

Baseline++:

cosine classifier

A different direction

Focus on pre-training richer representations

 Representations that know more about the world can adapt better

 Leveraging self-supervision (see next talk by Relja and Andrey)

“Boosting few-shot visual learning with self-supervision”,

Gidaris et al. 19

““When does self-supervision improve few-shot learning?”,

Su et al. 19

“Learning generalizable representations via diverse supervision”, Pang et al. 19

Also:

“Charting the right manifold: manifold mixup for few-shot learning”, Mangla et al. 20

“Rethinking few-shot image classification: a good embedding is all you need?”, Tian et al. 20

Not covered because of time constraints

 Semi-supervised few-shot / meta learning:
 “Low-shot learning with large-scale diffusion”, Douze et al. 18

 “Meta-learning for semi-supervised few-shot classification”, Triantafillou et al. 18

 Few-shot / meta learning with noise labels:
 “Graph convolutional networks for learning with few clean and many noisy labels”, Iscen et al 20

 Learning with imbalanced datasets (many-shot and few-shot classes):
 “Learning to model the tail”, Wang et al. 17

 “Large-scale long-tailed recognition in an open world”, Liu et al. 19

 “Decoupling representation and classifier for long-tailed recognition”, Kang et al. 20

 Few-shot learning beyond image classification:
 “Few-shot object detection via feature reweighting”, Kang et al. 19

 “Meta-learning to detect rare objects”, Wang et al. 19

 “Few-shot semantic segmentation with prototype learning”, Dong et al. 18

 “PANet: Few-shot image semantic segmentation with prototype alignment”, Wang et al. 19

 “Tracking by Instance Detection: A Meta-Learning Approach”, Wang et al. 20

 …

The end

