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= [ntroduction
=  Main types of few-shot algorithms
= Few-shot learning without forgetting



Agenda

= [ntroduction
* Few-shot |learning
» Meta-learning paradigm
= How to evaluate



Few-shot learning

= Have you seen before an okapi?
= Can you learn to recognize it from only this image?



Few-shot learning

* Humans: able to learn new concepts using few training examples
= Goal of few-shot learning: mimic this ability with machine learning methods



Few-shot before the deep learning “revolution”

= “One-shot learning of simple visual concepts”, Lake et al. 11
“One-Shot Learning with a Hierarchical Nonparametric Bayesian Model”, Salakhutdinov et al. 12
“A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories”, Fei Fei et al. 13

“Human-level concept learning through probabilistic program induction”, Lake et al. 15
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Here we will focus on deep learning based methods
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Formally: Learn N-way K-shot classification tasks

= N = number of classes
= K =training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

okapi Lion Camel Horse Lama

Example: 5-way 1-shot classification task



Formally: Learn N-way K-shot classification tasks

= N = number of classes
= K =training examples per class, as small as 1 or 5!

Train / Support examples Test / Query examples

Lion Camel Horse Lama

Example: 5-way 1-shot classification task

Question: is this possible with deep learning-based models?



Train directly a deep learning model

Train / Support examples Test / Query examples

Okapi Lion Camel Horse Lama

algorithm classifications

[ Learning ] |

= Train from scratch a classification network
= Qverfit to training data =» poor accuracy on test data ®



Overcome data scarcity with transfer learning

Base classes Novel classes few
many training data training data Query

&

Lion
1%' Learning 2"! Learning
stage stage
Adaptation
Few-Shot Model Recognition model

for novel classes

Overcome data scarcity with transfer learning
» Recipe followed by all few-shot learning methods



Overcome data scarcity with transfer learning

Base classes Novel classes few
many training data training data Query

Dog

Lion
1%' Learning 2"! Learning
stage stage
Adaptation
Few-Shot Model Recognition model

for novel classes

1. Acquire knowledge: train on other similar problems
2. Transfer knowledge: adapt to the problem of interest



Overcome data scarcity with transfer learning

Base classes Novel classes few
training data

many training data
= Ml

1%' Learning 2"! Learning
stage stage
Adaptation
Few-Shot Model Recognition model

for novel classes

1. Acquire knowledge: use many training data from some base classes
2. Transfer knowledge: adapt to novel classes with few training data



Overcome data scarcity with transfer learning

Base classes Novel classes few
many training data training data Query

&

Lion
1%' Learning 2"! Learning
stage stage
Adaptation
Few-Shot Model Recognition model

for novel classes

base classes == train classes

} no overlap between them
novel classes == test classes



Common transfer learning example: Fine-tuning

Pre-trained
Baseclasses @ - T - -m-m-m-mmmmm——m—- T i
many trammg data ConvNet features Output Iayer cat
r——— = 95%
= — .
2% tiger
Random
Copy layers Initialization
Novel classes few Pre-trained ConvNet features Output layer _
training data 7= 95% lion
©RY ||| <=,
Lion Dog s P dog

Fine- tuned

1. Acquire knowledge: pre-train a network on the base class data
2. Transfer knowledge: fine-tune the network on novel class data



Few-shot learning methods

Fine-tuning: risk of overfitting in case of extremely limited data (few-shot)

Goal of few-shot learning: devise transfer learning algorithms that would work
well in the few-shot scenario, e.g., metric learning, meta-learning methods, ...
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= How to evaluate



Few-shot meta-learning

Most (but not all) few-shot methods use meta-learning (learn-to-learn paradigm)

“Evolutionary principles in self-referential learning, or on learning how to learn”, Schmidhuber 1987
“Meta-neural networks that learn by learning”, Naik et al. 1992

“Lifelong learning algorithms”, Thrun 1998

“Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

What is few-shot meta-learning?



Few-shot classification

Train / Support examples Test / Query examples

Okapi Lion Camel Horse
PO T §

‘/ --------- l ------------------------------ l ------- \‘
: Learning generate Model ‘predict ., query
E algorithm my, ! classifications

Few-shot classification

_________________________________________________

* input: labeled support data, unlabeled query data
* intermediate output: model for classifying the query images
= output: predicted query labels



Few-shot classification with meta-learning

Train / Support examples Test / Query examples

Lion Camel Horse Lama

query

Learning e L
mg ! classifications
1

algorithm

_________________________________________________

= Train the learning algorithm (instead of the classification model)



Few-shot classification with meta-learning

Train / Support examples Test / Query examples

Lion Camel Horse Lama

query
mg ! classifications
1

_________________________________________________

= Train the learning algorithm (instead of the classification model)
= |[mplement it with a meta-learner fy (somehow)



Few-shot classification with meta-learning

Train / Support examples Test / Query examples

Okapi Lion Camel Horse Lama
190% Tk 3 :

query
m- ! classifications
1

_________________________________________________

= Train the learning algorithm (instead of the classification model)
* |[mplement it with a meta-learner f,
= Optimize fg on solving few-shot classification tasks (learn-to-learn)



Few-shot classification with meta-learning

Train / Support examples Test / Query examples

Lion

‘predict query
t:packward classifications
" =7
TTTTTTTTTTTTTTmT e N o
N e
\~-

must back-propagate the entire few-shot learning process

= Train the learning algorithm (instead of the classification model)
* |[mplement it with a meta-learner f,
= Optimize fg on solving few-shot classification tasks (learn-to-learn)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

City Elephan

query labels

‘predict
:pre = Classification
Loss

How to train the meta-learner?
= Train it on the same conditions it will be used in 2"d learning stage (meta-test)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

City Elephan

query labels

‘predict
:pre = Classification
Loss

How to train the meta-learner?
* Train meta-learner fg on solving a distribution of few-shot tasks (aka episodes)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

City Elephan

query labels

‘predict
:pre = Classification
Loss

How to train the meta-learner?
* Train meta-learner fg on solving a distribution of few-shot tasks (aka episodes)
= Construct such training episodes using the base class data



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Sea
' ————]

Shark

Bus Beac

City Elephan

query labels

‘predict
:p Classification
Loss

How to train the meta-learner?
* Train meta-learner fg on solving a distribution of few-shot tasks (aka episodes)
= Construct such training episodes using the base class data

= py sampling N classes x ( K support examples + M query examples)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

City Elephan

query labels

‘predict
' [ Loss

Classification ]

min » L(fy(S), Q)
(5,Q)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

Elephan

City
query labels

‘predict
:pre = Classification
Loss

min » L(fy(S), Q)
)

NxK N*M

., and query set Q = {x, 3}

Episode (S,Q): support set S = {xj,v;}

m=1



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

Shark

Elephan

City
query labels

" ‘predict
.| Meta-learner generate Model p [ Classification ]
! fe backward m, backward Loss

i~ Few-shot classification \

_______________________________________________________ \________.ar

Objective: \
min } L(f4(5), Q)
(S’Q)

Inner part: generate using the support set S the classification model m,, = f5(S5)



Meta-learning: training time (15! learning stage)

train / support examples test / query examples
of training episodes of training episode

Beac Sea

—

City Elephan Shark
query labels
:predir:t [ Classification ]
| backward ;—055
3 Few-shot classification ) _-"
______________________________________________________________ N
L] L] ’
Objective: _--"
min ) 1fy(5), Q)
(5.Q)

Outer part: optimize 8 w.r.t. the queries classification loss L(fy(S),Q) = L(mq,, Q)



Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

City Elephan Shark
query labels
T
°3:§, . .
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@
“predict —
:p [ Classification }
backward Loss

Meta-training routine:
1. Sample training episode (S, Q)

2. Generate classification model m,, = f5(5)

3. Predict classification scores p,, = m,(x)}) for each x5 in Q

4. Optimize 6 w.r.t. the queries classification loss L(fy(S), Q)



Meta-training routine:
1.

2.

3.

Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

Beac Sea

—

City Elephan Shark

'
Sample training episode (S, Q)
Generate classification model m, = f5(5)

Predict classification scores p,, = m,,(x,.) for each x5 in Q

Optimize 6 w.r.t. the queries classification loss L(f5(S), Q)



Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

City Elephan Shark

. N [fl} """ ééiié?é?e"""'
Meta-training routine: i =
1. Sample training episode (S, Q) ,,«/ """""""""
2. Generate classification model m, = f¢(S) v’
3. Predict classification scores p,, = m,,(x,3) for each x,2 in Q
4. Optimize 6 w.r.t. the queries classification loss L(fg(S), Q)



Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

City Elephan Shark

B B fzg[metaéﬂrner} ______ generate‘“‘predlict
Meta-training routine: . : /I
1. Sample training episode (S, Q) /I
2. Generate classification model m,, = f5(5) ,’

3. Predict classification scores p,, = m(p(x,(fl) for each x,(f, In Q g
4. Optimize 6 w.r.t. the queries classification loss L(fy(S), Q)



Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

Bus Beac Sea
|
City Elephan Shark
s B | query labels
&,
X Tiger Elephant
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' | Meta-learner dEnerate Model P Classification
| fo m, Loss

Meta-training routine: ; : /
e A y 4
1. Sample training episode (S, Q) L/
/
2. Generate classification model m,, = f5(5) L/
/
3. Predict classification scores p,, = m,(x) foreach x5 inQ  ,*
/

4. Optimize 8 w.r.t. the queries classification loss L(fg(S), Q) g
= e.g. Ccross entropy loss Zm—log(pm[y,%])



Meta-learning: training time (15! learning stage)

train [ support examples test / query examples
of training episodes of training episode

Sea
f—

Bus Beac

City Elephan Shark
ﬂ e W | query labels
"';3,. Tiger Elephant ! !
%, ™ — ¥
"%, M| | a
..ro% l il ..1 :
[Meta-learner} generate “:predict [Classiﬁcatinn}
.. ) | Loss
Meta-training routine: | o backward o —
. _ N /
1. Sample training episode (S, Q) L/
e L %
2. Generate classification model m,, = f5(5) L’
/
3. Predict classification scores p,, = m,(x) foreach x5 inQ  ,*

7/
4. Optimize 8 w.r.t. the queries classification loss L(fg(S), Q) g

= must back-propagate through the few-shot learning process



Meta-learning: test time (2"d [earning stage)

Meta-training time (15t learning stage)

train / support examples test / query examples
of training episodes of training episode
Bus Beac Sea
City Elephan Shark
query labels

e

o

’ l l

t enerate ‘predict —
Meta-learner ‘ . Model p [ Classification }
fe backward m, backward Loss

Few-shot classification

Meta-testtime (2" learning stage)

train / support examples of novel classes test / query examples m et a'l ear n er a.t teSt tl m e
sl * remains fixed (typically)

£ = R

\ [ E Ll = generates a model for novel classes

»Rf\ Meta-learner generate Model :m GlliChy ueTy
_ ! classifications




From Supervised Learning to Meta-Learning

= training =» meta-training

= test time =» meta-test time

= mini-batch of images =» mini-batch of few-shot episodes

= training data =» meta-training data = all possible training episodes

= test data =» meta-test data = test episodes



Few-shot learning vs Meta-learning

Few-shot learning:
= Any transfer learning method that targets on transferring well with limited data
= E.g.: pre-train + fine-tuning, or using metric learning, or using meta-learning

Meta-learning:

= | earn the learning algorithm itself
= “Learning to learn by gradient descent by gradient descent”, Andrychowicz et al. 16

» |ngredient of many few-shot algorithms,
» Also used in multi-task learning, RL, ...
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= How to evaluate



How to evaluate few-shot algorithms

Train / Support examples Test / Query examples

okapi Lion Camel Horse

Lama

i
S Y
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3
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b

Example of 5-way 1-shot test task

2"d [earning stage (meta-test time for meta-learning):

» Use a held out set of classes

= Sample a large number of N-way K-shot few-shot tasks

= Report average accuracy on the N x M query examples of all tasks



How to evaluate few-shot algorithms

Datasets / benchmarks

Omniglot: Lake et al. 11

» 1623 characters from 50 alphabets

» 20 instances per character / class

» 5-way and 20-way 1-shot or 5-shot tasks

Bengali Braille Futurama
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MinilmageNet: Ravi et al. 17

= 84x84 sized images

= 100 classes: 64 train, 16 val, 20 test
= 1-shot 5-way & 5-shot 5-way tasks

ImageNet-FS: Hariharan et al. 17

= normal ImageNet images

» classes: 389 train, 300 val, 311 test
= 311-way 1, 2, 5, 10, or 20 shot tasks
" more reallstlc & challenglng settlng

Also: tiered-MinilmageNet (Ren et. al. 18), CIFAR-FS (Bertinetto et al 19), CUB, Tracking in the wild (Valmadre et al. 18), ...



Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
=  Optimization based meta-learning
= Learn to predict model parameters



Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
=  Optimization based meta-learning
= Learn to predict model parameters

Disclaimer: loose categorization, many combine elements of several types, not exhaustive enumeration



Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
=  Optimization based meta-learning
= Learn to predict model parameters



Metric learning for few-shot classification

Base classes Input space Output metric space

many training data 70 @ s

= 1st|earning stage: train a deep metric function on the base class data

= 2nd [earning stage: use it as a nearest neighbor classifier to novel classes
= Non-parametric at this stage
= Simple and works well with limited data



Siamese neural networks

Score: 1
Compare >

|—> (the same class)

Siamese network:
= Given two images: outputs a similarity / distance score.
= Similarity score: 1 if the two image belong to the same class, 0 otherwise

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015



Siamese neural networks

Ssame
1st learning stage — verification task: different
Learn with a siamese convnet if 2 images
belong to same / different classes. sl

different
2"d stage (convnet is fixed): 7k w
Classify query to most similar support image \ ? /

“Siamese neural networks for one-shot image recognition”, O. Koch et. al. 2015



Metric learning

Extensive work on (deep) metric learning:

= “Neighborhood Component Analysis”, Goldberger et. al. 05

= “Dimensionality Reduction by Learning an Invariant Mapping”, Hadsell et. al. 06

= “Distance Metric Learning for Large Margin Nearest Neighbor Classification”, Weinberger et. al. 09
= “Deep Metric Learning Using Triplet Network”, Hoffer et. al. 15

» “Web-Scale Training for Face Identification”, Taigman et. al. 15

» “FaceNet: A Unified Embedding for Face Recognition and Clustering”, Schroff et al 15



Meta-training based metric learning

Train the metric model on the same way it would be used at 2"9 learning stage
» “Matching Networks for one-shot learning”, O. Vinyals et al. 16



Matching Networks

= | earn to match

Feature
extractor

Support
images S

-
-
-~ -
-----

Query x%e Q|

“Matching networks for one shot learning”, Vinyals et al. 2016



Matching Networks

= Learnto match
= Extract features from the query and support images

Feature
extractor

Support
images S

-
-
-~ -
-----

Tas -

“Matching networks for one shot learning”, Vinyals et al. 2016



Matching Networks

= | earn to match

= Extract features from the query and support images
= Classify with differentiable (soft) nearest neighbor classifier

Feature
extractor

Support
images S

~‘
L)
haa
-
L

“Matching networks for one shot learning”, Vinyals et al. 2016



Matching Networks

= Learnto match
= Extract features from the query and support images
= Classify with differentiable (soft) nearest neighbor classifier

Support D =

images S

_~Similarities of x? with x;;:
O[] — exp(cos(Fg(xQ) Fg(x,“z)))
a(x®)[k] ZH exp(cos(Fo (x@)Fo(xf)))

Feature
extractor P

~‘
L)
haa
-
L

“Matching networks for one shot learning”, Vinyals et al. 2016



Matching Networks

= | earn to match

= Extract features from the query and support images
= Classify with differentiable (soft) nearest neighbor classifier

Support fl,

images S

Feature
extractor P

_~Similarities of x? with x;;:
O[] — exp(cos(Fg(xQ) Fg(x;'g)))
a(x®)[k] ZH exp(cos(Fo (x@)Fo(xf)))

~~
L)
haa
-
L

(O—®Classification probabilities for x@:
p=m,(x?) = 2 a(x9)[k] - one_hot(y;)
k

“Matching networks for one shot learning”, Vinyals et al. 2016



Meta-training in Matching Networks

= Meta-learner fgq: feature extractor Fg(-)
Nx*xK

= Generated model m,: extractor Fg(-) with support features {Fg (x;f) yif}kzl

feature
extractor

Support
images S

-
-
-~ -
-----

“Matching networks for one shot learning”, Vinyals et al. 2016



Meta-training in Matching Networks

Meta-training routine:
1.

2.

feature
extractor

Generate classification model m,, = fy(S) = {Fe (), {Fo (i), }’zf}l,jj}

o »
0O / b
Support -2

images S D

Sample training episode (S, Q)

Predict classification scores pp, = m,(x2) = X, a(x2)[k] - one_hot(yi)

Optimize 6 w.r.t. the query classification loss L(f3(S), Q) = ¥, —10g(pm[VL])



Meta-training in Matching Networks

Meta-training routine:
1.

2.

feature
extractor

Generate classification model m, = f(S) = {Fe('), {Fo (i), yzf}l,fj}

o »
0O / b
Support -2

images S D

Sample training episode (S, Q)

Predict classification scores p,, = mga(x,%) = Y a(x)[k] - one_hot(yi)

Optimize 6 w.r.t. the query classification loss L(f3(S), Q) = ¥, —10g(pm[VL])



Matching Networks

S5-way Acc 20-way Acc

Model Fine Tune 1-shot 5-shot 1-shot 5-shot

BASELINE CLASSIFIER 86.0% 97.6% 729% 92.3%

MANN (No Conv) [21]

CONVOLUTIONAL SIAMESE NET [11] 97.3% 98.4% 88.1% 97.0%

Y

N . — —
CONVOLUTIONAL SIAMESE NET [11] N 96.7% 98.4%  88.0% 96.5%

Y

N

MATCHING NETS (OURS) 98.1% 98.9% 93.8% 98.5%
MATCHING NETS (OURS) Y 97.9% 98.7%  93.5% 98.7%

Table 1: Results on the Omniglot dataset.

Model FineTune | >WaY4c  w Metric learning:

-shot  5-shot o _ _
BASELINE CLASSIFIER Y 384% 512% better results than pre-training & fine-tuning
MATCHING NETS (OURS) N 44.2% 57.0% m Meta_training:
MATCHING NETS (OURS) Y 46.6% 60.0%

Improves over siamese networks

Table 2: Results on minilmageNet.



Matching Networks

K > 1 support example per class:
* Independently matches a query with each support example
= Can we do something smarter?

feature
extractor

Support
images S

-
-
-~ -
-----

“Matching networks for one shot learning”, Vinyals et al. 2016



Prototypical Networks

= Learn to extract class prototypes for comparisons:
= prototype: aggregates information of all support images in a class

Feature space

“Prototypical Networks for Few-Shot Learning”, Snell et al. 2017



Prototypical Networks

= prototype i-th class = mean training feature vector of its support set S;
= K=1:the same as matching networks

1
Ci =m z Fg (xicg)

(x%, ¥R )ES;

Feature space




Prototypical Networks

= prototype i-th class = mean training feature vector of its support set S;

1
Ci =m z Fg (xicg)

(x%, ¥R )ES;

Feature space

» Classify to closest prototype with prob.

exp( —dist(Fy(x?), c;)
plil = m, O] = (aisCFa ) )

- Z?’ exp (—diSt(Fg (xQ), cj))

Distance dist(-,-): Euclidean or cosine




Prototypical Networks

= prototype i-th class = mean training feature vector of its support set S;

Feature space

» Classify to closest prototype with prob.

exp( —dist(Fy(x?), c;)
plil = m, O] = (aisCFa ) )

- Y exp (—diSt(Fg (x9), cj))

Prototypes: similar to output weights of

a classification network with bias =0



Prototypical Networks

= prototype i-th class = mean training feature vector of its support set S;

Feature space

» Classify to closest prototype with prob.

exp( —dist(Fy(x?), c;)
plil = m, O] = (aisCFa ) )

- Z?’ exp (—diSt(Fg (xQ), cj))

During meta-training (optimizing Fyp):

back-propagate through the prototypes too



Meta-training in Prototypical Networks

Feature space

Meta-training routine:
1. Sample training episode (S, Q)

2. Generate classification model m, = f5(5) = {FQ (), {c; 1,

exp(—dist(Fg (xQ),ci))
Z}V exp(—dist(Fg(xQ),cj))

3. Predict classification scores p,, = mcp(x,%) =

4. Optimize @ w.r.t. the query classification loss L(f5(S), Q) = Y —log(Pm[y])



Meta-training in Prototypical Networks

Feature space

Meta-training routine:
1. Sample training episode (S, Q)

2. Generate classification model m, = f(S) = {F@(-),{ci}’i"=1

exp(—dist(Fg (xQ),ci))
Z}V exp(—dist(Fg(xQ),cj))

3. Predict classification scores p,, = mcp(x,%) =

4. Optimize @ w.r.t. the query classification loss L(f5(S), Q) = Y —log(Pm[y])



Prototypical Networks

Table 2: Few-shot classification accuracies on minilmageNet. All accuracy results are averaged ove
600 test episodes and are reported with 95% confidence intervals.

5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot
BASELINE NEAREST NEIGHBORS” Cosine N 28.80 £ 0.54%  49.79 + 0.79%
MATCHING NETWORKS [29]" Cosine N 4340 +£0.78%  51.09 £ 0.71%
MATCHING NETWORKS FCE [29]* Cosine N 4356 £ 0.84%  55.31 £ 0.73%
META-LEARNER LSTM [22]* - N 4344 +£0.77%  60.60 £ 0.71%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 4942 + 0.78%  68.20 + 0.66%

80% ~ Gn . \

BN Matching / Proto. Nets I Matching Nets
I Proto. Nets

(5] o =J

2 2 82

&~ & ==
L L 1

P

(=)

ES
1

5-shot Accuracy (5-way)
8
=

5-way 5-way 20-way 20-way 5-way 5-way 20-way 20-way
Cosine Euclid. Cosine Euclid. Cosine Euclid. Cosine Euclid.
1-shot 5-shot

For K>1 shots per class: prototype vectors with Euclidean distance have better
accuracy than individual comparison with each support example (Matching Nets)



Meta-training based metric learning

Implement distance function in prototypical nets with a relation network
“Learning to Compare: Relation Network for Few-Shot Learning”, Sung et. al. 18

W

embedding module relation module

Feature maps concatenation

Relaton One-hot
score  vector

8¢ B

#1880

Learn to synthesize additional support examples for the metric function

“Low-shot learning from “Image deformation meta-networks
imaginary data”, Wang et.al. 18 for one-shot learning”, Chen et.al. 19
Sew  (EeeeeESaEeg S el
Sample % N _? E#}/ | g — Query Image
Noise z / — ‘ = <R e o
( ’, heron) % . (__> @:‘7 o e )
= A et v o R

Propagate with a GNN information from the labeled support set to the query
“Few-shot Learning with Graph Neural Networks”, Garcia et al. 18
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Task-adaptive metric function based on task-context representations
“TADAM: Task dependent adaptive metric for improved few-shot learning”,
Oreshkin et. al. 18
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Meta-training based metric learning

= |n general: simple and effective methods

= But, meta-training can be bothersome:
= Train a different metric function for each possible K or N
= For small N =» training with easy examples
= Not all methods follow this rule, but then, how to tune N, K and M?



Meta-training based metric learning

= |n general: simple and effective methods

= But, meta-training can be bothersome

* |s meta-training really necessary for learning good features?



Cosine distance based classification network

Train typical classification network: feature extractor + classification head
Classification head: replace dot-product (i.e., linear layer) with cosine distance

1st [earning stage 2"d |earning stage
Base class data Novel class data Fixed
Feature (Few) Feature @
e 7 extractor ,,9.'?§§'.f.'9!' | 4% I extractor (9_'_95_5_{9'_’ :
X, EC(-\W.?.L)T’ Y

novet class weights

Cosine distance based classifier

Cosine |mmme — ¥
0(xi) dlstance ‘

Rd Xc Image source (modified):
" W. Chen et. al. 2019

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 2018
“Low-Shot Learning with Imprinted Weights”, Qi et al. 2018



Why distance based classification head?

Enforces similar behavior as metric learning models:

= Given an image, the learned feature must maximize (minimize) cosine
similarity with weight vector of the correct class (incorrect classes)

L2-normalized

Base classes Input space feature space
- -, - ~
many training data O Re N
! 1 A® A p n M
II As \ " cat \
® A ! A |
A AA L X
\ OA / \ o!
‘\1 ® .,f H“ .... /
N , scar tiger”
= - -— - - ~ - - -
{H A @}

L2-normalized weight
vectors of base classes



Why distance-based classification head?

Enforces similar behavior as metric learning models
= |earn features with reduced intra-class variance =
= Better generalization to novel classes

tSNE dimensions colored by category tSNE dimensions colored by category

tsne-y
tsne-y

Source:
Gidaris et al. 2018

tsne-x tsne-x

(a) Cosine-similarity based features of novel categories (b) Dot-product based features of novel categories



Cosine distance based classification network

» ]1st|earning stage: standard training using the base class data
* Trains the extractor fo and classification weights W, of base classes
= Much simpler than meta-training based metric methods

1st learning stage 2"d |learning stage
Base class data .@ Novel class data Fixed @
Feature (Few) Featur
eature Classifi
g /- extractor ,,9.'5.’??'.['9!' ' " extractor (,--.9?.5_'___9'_' |

novel class weights

Cosine distance based classifier

Cosine

0(Xi) dlstance

Image source (modified):
/ Chen etal. 2019



Cosine distance based classification network

= 2nd stage: fix extractor f4 + “learn” only the classification weights W/,

= compute W, with prototypical feature averaging

w; = |5| Z fg(x,f)VWlEW

(x3, ¥3)ES;
1st learning stage 2"d |learning stage
Base class data Novel class data Fixed @
Feature (Few) Feature
- extractor ,‘9!§§§!f!§_f ' . extractor 9.'9?.5_'{9'_' i
X C(|WaJ Y

noveT class’ welghts

Cosine distance based classifier

Cosine

0(Xi) dlstance

Image source (modified):
/ Chen etal. 2019



Cosine classifier

Models 1-Shot 5_Shot Simpler training with better results
than Matching and Prototypical Nets

Matching-Nets [26] 55.53 = 0.48% | 68.87 £+ 0.38%
Prototypical-Nets [23] | 54.44 4+ 0.48% | 72.67 &= 0.37%

Cosine Classifier 54.55 +0.44% | 72.83 + 0.35%

Table 1: 5-way accuracies on MinilmageNet.

Approach k=1 2 S 10 20
Prior work

Prototypical-Nets 393 544 663 712 739
Matching Networks 436 540 660 725 769
Cosine Classifier . 45.23 56.90 68.68 74.36 77.69

Table 2: 311-way accuracies on ImageNet-FS for K=1, 2, 5, 10, or 20 examples per novel class.

Source: “Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18



Cosine classifier

Learn an ensemble of cosine classifiers Dense (cosine-based) classification & implanting new task-specific layers
“Diversity with cooperation: ensemble methods for few-shot “Dense classification and implanting for few-shot learning”, Lifchitz et al. 19

classification”, Dvornik et al. 18
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Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
=  Optimization based meta-learning
= Learn to predict model parameters



Meta-learning with memory modules

train / support examples test / query examples
of training episodes of training episode

query labels

Cat

Meta-learner :]JI'EdICt [ Classification }
fo backward Loss

ikx Few-shot classification

T o e e o o e e o e o e o o o o o o o =

* Few-shot classification:
* nput: labeled support data, unlabeled query data
* Intermediate step: generate model
= output: predicted query labels



Meta-learning with memory modules

train / support examples test / query examples
of training episodes of training episode

query labels

Lion Tiger Elephant

Meta-learner :]JI'EdICt [ Classification }
fo backward Loss

ikx Few-shot classification

T o e e o o e e o e o e o o o o o o o =

* Few-shot classification:

. mput Iabeled support data, unlabeled query data
. =>» store support data to memory
= output: predicted query labels by accessing the memory

.

Treats few-shot classification as a “black box” prediction problem



Meta-learning with memory modules

“A Simple Neural Attentive Meta-Learner”,

Mishra et al. 18

Predicted Label

(Examples,

Labels)

o oo o
@) @) O O

Yz Yo Yo -

“Meta-Learning with Memory-Augmented Neural

Networks”, Santoro et al. 16

Class Prediction

L0-1@-[-

Shuffle:
X? Ye1 (XHI Yy) Labels (XL 0) (X'? %)
| | Classes
Episode Samples
“Meta Networks”, Memory
Munkhdalai et al. 17 . ¥
learmer emory access

Slow weights Fast weights Fast
. parameterization

Meta weights

Fast
parameterization
Y

Input Base  |Mera info

learner

Slow weights i Fast weights —Output




Example: Simple Neural Attentive Meta-Learner

» Few-shot as a sequence labeling task:
= Given past labeled images, what is the label of the current query image

et

Predicted Label A

R A

(Examples, Xiz Xio X3 X;—=->Query example without label

Labels)
Yiz Y2 Y1 -

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18



Example: Simple Neural Attentive Meta-Learner

* Meta-learner implementation:
» Temporal convolutions: aggregates past information

= Attentional Module: pinpoints to query-specific past information

=  “Attention is all you need”, Vaswani et al. 17

Predicted Label

(Examples,
Labels)

re=|ires===
---*-I----- -

U

Xt—3 xt—2
Yiz Yea

i
i

Yia

———————————————

Attentional :
Module !

1
Temporal |
Convolution !

Temporal
Conv. Module

outputs, shape [T, C + D]

A

concatenate

A

causal conv, kernel 2
dilation R, D filters

A

[

inputs, shape [T, C]

“A Simple Neural Attentive Meta-Learner”, Mishra et al. 18

Attention Module

outputs, shape [T, C + V] |

concatenate =g [T

—

affine, output size V
(values) [Fnatmul, masked soﬂ:maﬂ

affine, output size K| |affine, output size K
(query) (keys)
- * -
(I

inputs, shape [T, C]




Meta-learning with memory modules

train / support examples test / query examples
of training episodes of training episode

query labels

Meta-learner :predlct [ Classification }
fo backward Loss

Meta-training routine: ’u Few-shot classification

1. Sample training episode (S, Q)

2. Generate classification model m,, = f5(5)

3. Predict classification scores p,, = m,, (x,%)

4. Optimize @ w.r.t. the query classification loss L(fy (- |5), Q) = Ym —log(®@m[¥:2])



Meta-learning with memory modules

train / support examples test / query examples
of training episodes of training episode

query labels

Cat Lion Tiger Elephant

Meta-learner :predict [ Classification }
. fo backward Loss
Meta-training routine: ] Few-shotclassificaton |
1. Sample training episode (S, Q) store & access

_ -~ support data with

2—Generate-classification-medebm,, = /,(S) - a memory module
3. Predict classification scores {p,,}m = fg({x,(,’l}m|5) for all queries

4. Optimize 6 w.r.t. the query classification loss L(fy (- |S), Q) = X —log(@m[yi])



Meta-learning with memory modules

= More generic than metric learning methods
= applicable to other learning problems: regression, RL, ...

= More data hungry (for training the meta-learner)
= More computational expensive



Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
= Optimization based meta-learning
= Learn to predict model parameters



Optimization-based meta-learning

train / support examples test / query examples
of training episodes of training episode query labels
Lion Tiger Elephant
. redict - -
i Meta- Iearner p [ Classification }
backward Loss

Key idea: few-shot classification as a parameters optimization problem
= “Optimization as a Model for Few-Shot Learning”, Ravi et al. 17

Here we will focus on MAML: “Model-Agnostic Meta-Learning”, Finn etal. 17



MAML: Optimization-based meta-learning

Fine-tuning: start from @ and optimize w.r.t. training loss L(6, S) using gradient steps:
(p «— 9 —a VBL(B' S) (to simplify the description: only the 15t step)
@: parameters of novel class model m,,

Fine-tuning with limited data: requires “good” pre-trained parameters 6



MAML: Optimization-based meta-learning

Fine-tuning: start from @ and optimize w.r.t. training loss L(6, S) using gradient steps:
Q@ —0—aVyL(0,s) (to simplify the description: only the 15t step)

@: parameters of novel class model m,,

Fine-tuning with limited data: requires “good” pre-trained parameters 6

MAML: meta-learn @ so that it transfers well via fine-tuning



MAML: Optimization-based meta-learning

train / support examples test / query examples

of training episodes of training episode query labels

Tiger Elephant

4 iy + -
i 3 158 |55
. k g e 4 . I. e,
L - : Lig 8§ e e
F e I e .
r‘, *

. - redict
i [ Meta-learner } fine-tune Model p [ Classification }

fe backward mg, backward Loss
Few-shot classification |

MAML: meta-learn 8 so that it transfers well via fine-tuning

min Z L6 — aVyL(8,5),Q)
(5.Q)



MAML: Optimization-based meta-learning

train / support examples test / query examples

of training episodes of training episode query labels

Tiger Elephant

S l """""""" f ',;;{l;;{;"""""'l """" “predict
| Meta-learner p [
fe

Classification
Loss

backward mg backward
Few-shot classification |

MAML: meta-learn 8 so that it transfers well via fine-tuning
0 —«a VQL(B, S)
(5.Q)

Inner optimization:
Fine-tunes @ for the task using the support data §



MAML: Optimization-based meta-learning

train / support examples test / query examples

of training episodes of training episode query labels

Tiger Elephant

S l """""""" f ',;;{l;;{;"""""'l """" “predict
| Meta-learner p [
fe

Classification
Loss

backward mg backward
Few-shot classification |

MAML: meta-learn 8 so that it transfers well via fine-tuning
min z L(O—aV,L(8,S),0)
(5.Q)

outer optimization:
minimizes w.r.t. 8 all the task-specific classification losses of the query data Q



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)

Inner optimization (fine-tune using train data S): My—g_q v,1(6.5)

Predict classification scores p,, = m,(x,2) for each query x,,

Outer optimization: optimize 8 w.r.t. the loss on query data Q:

0 —0—LVyL(B—aVyL(6,S),0)



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)

Inner optimization (fine-tune using train data S): My—g_q v,1(6.5)

Predict classification scores p,, = m,(x,2) for each query x,,

Outer optimization: optimize 8 w.r.t. the loss on query data Q:

0 —0—LVyL(B—aVyL(6,S),0)



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)

Inner optimization (fine-tune using train data S): my_g_q v,1(0,5)

Predict classification scores p,,, = m,(x,3) for each query x,,

Outer optimization: optimize 8 w.r.t. the loss on query data Q:

6 <« 0 — ,8 V@L(Q — VQL(Q,S),Q)



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)
Inner optimization (fine-tune using train data S): My—g_q v,1(6.5)

Predict classification scores p,, = mq,(x,(fl) for each query x,(,’l

Outer optimization: optimize 8 w.r.t. the loss on query data Q:

0 —0—LVyL(B—aVyL(6,S),0)



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)

Inner optimization (fine-tune using train data S): My—g_q v,1(6.5)

Predict classification scores p,, = m,(x,2) for each query x,,

Outer optimization: optimize @ w.r.t. the loss on query data Q:

0 <0 — ﬁ VHL(B —a VQL(B,S), Q)



Meta-training in MAML

Meta-training routine:

1.
2.

3.

Sample training episode (S, Q)

Inner optimization (fine-tune using train data S): My—g_q v,1(6.5)

Predict classification scores p,, = m,(x,2) for each query x,,

Outer optimization: optimize @ w.r.t. the loss on query data Q:

0 <0 — ﬁ VHL(B —a V@L(B,S), Q)

~
~
~
~
~
~
~
~
~
\\
~

. back-propagate through gradient descent
=» 2"d grder gradients w.r.t. 6



MAML: Optimization based meta-learning

— Mmeta-learning
---- learning/adaptation

VL3

\ V)

optimal parameters of training tasks . gt
VL -7 @3

// \\
*

L] ® *
1 b3

Figure 1: [llustrative diagram of our model-agnostic meta-learning algorithm (MAML), which
optimizes for a representation 0 that can quickly adapt to new tasks.

MAML: meta-learn 8 so that it transfers well via fine-tuning

min 2 L(6—aV,L(8,S),Q)
(5.Q)



MAML: Optimization based meta-learning

— Mmeta-learning
---- learning/adaptation

before meta-training 0
VL;
VL,
VL Pl
Pe R

Figure 1: [llustrative diagram of our model-agnostic meta-learning algorithm (MAML), which
optimizes for a representation 0 that can quickly adapt to new tasks.

MAML: meta-learn 8 so that it transfers well via fine-tuning

min 2 L(6—aV,L(8,S),Q)
(5.Q)



MAML: Optimization based meta-learning

— Mmeta-learning
---- learning/adaptation

before meta-training 0
\Z
VL,
after meta-training: Ve, b3
= 0 closer to optimal parameters o~
= good for fine-tuning to them N .
‘o °

Figure 1: [llustrative diagram of our model-agnostic meta-learning algorithm (MAML), which
optimizes for a representation 0 that can quickly adapt to new tasks.

MAML: meta-learn 8 so that it transfers well via fine-tuning

min 2 L(6—aV,L(8,S),Q)
(5.Q)



MAML: Optimization based meta-learning

5-way Accuracy

20-way Accuracy

Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% — -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% — —
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+04% | 99.9+0.1% | 95.8 £ 0.3% | 98.9 +0.2%

Minilmagenet (Ravi & Larochelle, 2017)

5-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 + 0.54%

49.79 + 0.79%

nearest neighbor baseline

41.08 + 0.70%

51.04 + 0.65%

matching nets (Vinyals et al., 2016)

43.56 + 0.84%

55.31 + 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 + 0.77%

60.60 + 0.71%

MAML, first order approx. (ours)

48.07 + 1.75%

63.15 +0.91%

MAML (ours)

48.70 1 1.84%

63.11 +0.92%




MAML: Optimization based meta-learning

= Consistent with the standard fine-tuning procedure
= Model-agnostic: can accommodate any network architecture
= Applicable to other problems: regression, RL, ...

= 2nd order gradients: computationally and memory expensive
= Difficult to train large models
= Need to train a different meta-learner for each N (classes) and K (shots)



Optimization based meta-learning

“Optimization as a Model for Few-Shot Learning”, Ravi et al. 17
» Learns the gradient descent step with an LSTM
= Actually precedes MAML

MAML with only 18t order derivatives for meta-learning 6
» “Model-Agnostic Meta-Learning”, Finn et al. 17
=  “On first-order meta-learning algorithms”, Nichol et al.18

» “Meta-SGD: Learning to quickly learn for few-shot learning”, Li et al. 17
= “Meta-learning with implicit gradients”, Rajeswaran et al. 19
= “Meta-learning with warped gradient descent”, Flennerhag et al. 20

= Optimize low-dimensional latent task embedding (hybrid method):
» “Meta-learning with latent embedding optimization”, Rusu et al. 19

Meta-learning with closed-form / convex solvers (for output-classification layer):
= ridge/logistic regression: “Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19
= support vector machine: “Meta-learning with differentiable convex optimization”, Lee et al. 19



Meta-learning with differentiable convex optimization

Linear SVM solver
4
/

Embeddings of / Weights of Score (logit)
'—l Training Examples / Linear Classifier for Each Class
[ 1—

) ) 8 —
LAl Ry = O =g

—_ )

Training Examples

Test Examples

Figure 1. Overview of our approach. Schematic illustration of our method MetaOptNet on an 1-shot 3-way classification task. The
meta-training objective is to learn the parameters ¢ of a feature embedding model f, that generalizes well across tasks when used with
regularized linear classifiers (e.g., SVMs). A task is a tuple of a few-shot training set and a test set (see Section 3 for details).

Key idea: meta-learn good features for SVM linear classifiers

“Meta-learning with differentiable convex optimization”, Lee et al. 19



Meta-learning with differentiable closed-form solvers

Base . A
minngset RIDQE-regression solver
] CNN | X iy = |
= () Base test-set |
g RR. |V mE
o i —p |
2 {0 A I:T |
& )
2
—_— CNN X Cross-entropy i
|
()] 0SS i

Episode 2
Episode 3
Episode N

Key idea: meta-learn good features for closed-form solvers for the output layer of the classification network
» Ridge-regression or logistic regression

“Meta-learning with differentiable closed-form solvers”, Bertinetto et al. 19



Agenda

= Main types of few-shot learning algorithms
= Metric learning
» Meta-learning with memory modules
=  Optimization based meta-learning
= Learn to predict model parameters



Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Usually, a small subset of model parameters:

» Predict diagonal of factorized weights:
» “Learning feed-forward one-shot learners”, Bertinetto et al.16

» Predict weights of classification head
= “Learning to model the tail”, Wang et al. 17



Learn to predict model parameters

Key idea: train the meta-learner to predict task-specific model parameters

Here focus:
= predicting the weights of the classification head
* in the context of the “few-shot learning without forgetting” problem



Agenda

» Few-shot learning without forgetting



Few-shot learning without forgetting

Base classes Novel classes few
many training data training data

Dog Classifier for

1% Learning 2"! Learning novel classes

stage stage

LE
&

Adaptation

Typical few-shot models:
= focus on learning novel classes with limited data
= but “forget” the initial base classes ®
= “forget”: worse than base class models or unable to recognize base classes



Few-shot learning without forgetting

Base classes Novel classes few
many training data training data

Lion Dog Classifier for both base
1% Learning 2" Learning and novel classes

stage stage

Lacd
T

Adaptation

* |n contrast, practical applications often require:
* to extend base classes with novels ones using few training data
= and without re-training on the full dataset (base+novel)

» “Few-shot learning without forgetting” targets this problem
= combines elements from both incremental and few-shot learning



Agenda

= Learn to predict classification weights
= Few-shot learning without forgetting

The description of the “Learn to predict classification weights” methods is in
the context of the “few-shot learning without forgetting” setting.



Learn to generate classification weights

Existing recognition model for base classes; / Adapted model for base & novel classes
Classification scores Classification scores
Test example SRbasclclasses Test example of base & novel classes
Feature e Feature e
Classifier —» .|:|Jl » Classifier _.‘IUDID
3 1
Base class "Y'Yo Base & novel 00000
weights class weights ;

Train examples
of novel classes

Parameter-generating
function

Feature
extractor

Green
class

Meta-model: adapts the model to recognize both base & novel classes

= Pre-trained network: feature extractor + cosine classification head
= Extend with parameter-generating function:
» outputs: new weights for the novel classes

“‘Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18
“Low-Shot Learning with Imprinted Weights”, Qi et al. 18
“Few-Shot Image Recognition by Predicting Parameters from Activations”, Qiao et al. 18

“Learning to model the tail”, Wang et al. 17



Learn to generate classification weights

Existing recognition model for base classes Adapted model for base & novel classe.s

Classification scores
Test example of base & novel classes

Classification scores

Test example of base classes

Classifier [—» .|:|J1 Classifier —#
3 i IUDID
Ba§e class "Y'Yo Base & 1'10vel 00000
weights | ~ class weights ;

Parameter-generating
function

Meta-model: adapts the model to recognize both base & novel classes

* Important to use cosine classification head:
* L,-normalize weights: all classes have same L, norms
= avoids class imbalance: biasing towards classes with bigger L,norms
= Easier to add novel weights =» unified recognition of both type of classes



Learn to generate classification weights

Existing recognition model for base classes Adapted model for base & novel classe.s

Classification scores Classification scores
Test example SRbasclclasses Test example of base & novel classes
Feature e Feature e
Classifier —» .|:|Jl » Classifier _.‘IUDID
3 I
Base class Base & novel
. @O0 . L ole] o

weights class weights ;

Train examples
of novel classes

—® Parameter-generating
function

Feature
extractor

Green
class

Meta-model: adapts the model to recognize both base & novel classes

* Important to use cosine classification head:

= Beneficial in the traditional incremental learning setting as well:
» “Learning a unified classifier incrementally via rebalancing”, Hou et al. 19
= “Memory efficient incremental through feature adaptation” Iscen et al. 20



Learn to generate classification weights

Novel

Base
classes

(a) (b)

Figure 2. Illustration of imprinting in the normalized embedding
space. (a) Before imprinting, the decision boundaries are deter-
mined by the trained weights. (b) With imprinting, the embedding
of an example (the yellow point) from a novel class defines a new
region.

Source: “Low-Shot Learning with Imprinted Weights”, Qi et al. 18



Meta-training in few-shot learning without forgetting

Meta-training routine:
1. Sample training episode (S, Q)

2. Generate classification model m, = fo(S)

3. Classification scores p,, = m, (x,,%)

4. Optimize 8 w.r.t. the query classification loss L(f¢(S), Q) = Ym —10g(Dm[yS])



Meta-training in few-shot learning without forgetting

Incremental few-shot episode:

» randomly choose some base classes as “fake” novel

= §: examples from the “fake” novel classes

= (): examples form both “fake” novel and remaining base

4
/

4
4
4
4

Meta-training routine: j
1. Sample training episode (S, Q)



Meta-training in few-shot learning without forgetting

iIncremental few-shot episode

of classes used as ‘“fake” novel

4
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2. Generate classification model m, = f5(S)

3. Classification scores p,, = m(p(x,?,) for both “fake” novel and base classes



Meta-training in few-shot learning without forgetting

iIncremental few-shot episode

!
!
1

Ignore pre-trained base classification weights
of classes used as ‘“fake” novel

L 4

I
1
1

~
~
~
S

Meta-training routine:
1. Sample training episode (S, Q)
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2. Generate classification model m, = f5(S)
3. Classification scores p,, = m(p(x,?,) for both “fake” novel and base classes

4. Optimize 8 w.r.t. the query classification loss L(fy(S), Q) = Ym —log(@m[vi])



Generate weights with prototypical feature averaging

Test example

weights

class weights

Existing recognition model for base classes, /' Adapted model for base & novel classes
Classification scores Classification scores
SRbasclclasses Test example of base & novel classes
Feature e Feature .
wwoe g, 8 g by
3 1
Base class "Y'Yo Base & novel

@900 @O

Green
class

Train examples
of novel classes

Parameter-generating

function

Feature
extractor

'/
d

Simplest case:
»= §;. support set of

i-th novel class

I 1
= novel weight = average feature vector of §;:  w; 7 =

“‘Low-Shot Learning with Imprinted Weights”, Qi et al. 18
“‘Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18



Generate weights with prototypical feature averaging

Existing recognition model for base classes

Test example

Classification scores
of base classes

Feature
extractor

Classifier —» .Uﬂ

Base class
weights

y

@00

f Adapted model for base & novel classe.s \

Classification scores
Test example of base & novel classes

Feature Classifier —»
extractor

i
Base & 1'10vel 00000
class weights ;

Green
class

Train examples
of novel classes

Feature
extractor

Parameter-generating
function

Simplest case:

»= §;: support set of i-th novel class

= novel weight = average feature vector of §;;  w."

“‘Low-Shot Learning with Imprinted Weights”, Qi et al. 18
“‘Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18

~. No meta-learning here

S
- T s |Z(xk, yi)es; 10 (xic)



Correlations between classification weights

Lion

-y Pt NS X
N Rl o

WILD-CAT ANIMALS

Gallinule Chickadee

BIRD

Many classes are semantically / visually related:
= Correlations between their classification weights
» Exploit those correlations for generating novel class weights?



Generate classification weights with attention module

Base classes.

| One training sample
4 for novel class Lion.

-

Existing recognition model for base classes Adapted model for base & novel classes

of base classes. Test example
a er
tractor

Attention coefficients; they sumto 1.

extracto |
class wei;
Train examples
of novel classes
rameter-generating

o function e alf—

el N I bl L P T PP - — S—— — "
= a((&][=)+ Boat +a(E]gd+ Cat +a(® = Tiger

Meta-model: adapts the model to recognize both base & novel classes - ! - -

=0.0 =02 =b8

Novel class weight vector  Weight vectors of base classes

—

i

= Novel weight using attention over base weights wy,:
N
witt =32 a(S)[b] - wy

= N,:. number of base classes

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18



Generate classification weights with attention module

. | One training sample
- for novel class Lion.

-

Attention coefficients; they sumto 1.
BB - 2(#2E2)- Boat +a(Hligd- Cat +a(EIED- Tiger

Novel class weight vector  Weight vectors of base classes

= Novel weight using attention over base weights wy,:
N
witt =32, a(S)[b] - wy

= N,:. number of base classes

“Dynamic Few-Shot Visual Learning without Forgetting”, S. Gidaris et al. 18



Generate classification weights with attention module

Base classes

e AP

. | One training sample
-~ for novel class Lion.

-

Attention coefficients; they sumto 1.

BB - 2(#2E2)- Boat +a(Hligd- Cat +a(EIED- Tiger
I R N P

Novel class weight vector  Weight vectors of base classes

—

= Novel weight using attention over base weights wy,:

wit = 308 a(S;)[b] - wy,

* a(S;)[b]: average similarity of support features with base class weight w;,
» Computed with cosine + softmax

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18



Generate classification weights with attention module

Base classes

—

. | One training sample
-~ for novel class Lion.

-

Attention coefficients; they sumto 1.
BB - 2(#2E2)- Boat +a(Hligd- Cat +a(EIED- Tiger

Novel class weight vector  Weight vectors of base classes

= Novel weight using attention over base weights wy,:

wit = 308 a(S;)[b] - wy,

att g

= Final novel weight: wi;** combined with prototypical averaging weight w;’”

“Dynamic Few-Shot Visual Learning without Forgetting”, Gidaris et al. 18



Generate weights with a GNN Denoising AutoEncoder

Initial Noisy Graph Neural Network based Denoising Auto-Encoder Reconstructed
classification classification  forclassification weight vectors  classification
weights weights . weights
Existing recognition model for base classes Adapted model for base & novel classes - ::l:
T Classification scores Xl (s E O —— — O—p B ——
of base classes Test example of base & novel clas: m
e, Pl amana |- f @ Sy |+ cmine | g | @ g 0] Q O .
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Meta-model: adapts the model to recognize both base & novel classes

°
|
|
°
l
o
0
0
|
e

= Learning inter-class correlations with GNN based Denoising AutoEncoders

* Nodes = classes
» Edges = each class connected to top most similar classes
= More expressive than a single layer attention mechanism

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19



Generate weights with a GNN Denoising AutoEncoder

A

A

Initial
classification
weights
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3SI0N ueissnen

Noisy

classification

weights

Graph Neural Network based Denoising Auto-Encoder
. Jor classification weight vectors

J2Aeq ydesn
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19Aeq ydean

Reconstructed
classification

. weights

= Learning inter-class correlations with GNN based Denoising AutoEncoders

= Nodes =
= Edges =

classes
each class connected to top most similar classes

= More expressive than a single layer attention mechanism

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19




Generate weights with a GNN Denoising AutoEncoder

Initial Noisy Graph Neural Network based Denoising Auto-Encoder Reconstructed
classification classification  forclassification weight vectors  classification
weights weights . weights
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= Learning inter-class correlations with GNN based Denoising AutoEncoders

= DAE: reconstructs initial (noisy) prototypical averaging weights
= Meta-training here can be data hungry
* injecting noise during meta-training =» regularize meta-training

“Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 19



Few-shot learning without forgetting

Novel classes

All classes

Approach K=1 2 5 10 20 K=1 2 5 10 20
Prior work

Prototypical Networks 393 544 663 71.2 739 49.5 61.0 69.7 72.9 74.6
Matching Networks 43.6 54.0 66.0 72.5 769 544 61.0 69.0 73.7 76.5
Logistic regression [Hartharan ef al. 16] 384 51.1 648 71.6 76.6 40.8 499 642 719 76.9
Logistic regression w/ H [Hariharan et al. 16] 40.7 50.8 62.0 69.3 76.5 52.2 594 67.6 72.8 769
Prototype Matching Nets w/ H [Wang et al. 18] 45.8 57.8 69.0 743 774 57.6 64.7 719 752 77.5
Cosine Classifier with few-shot classification weight generation

Feature Averaging [Gidaris et al. 18] 454 569 68.9 745 77.7 57.0 643 723 75.6 77.3
Attention Mechanism [Gidaris ef al. 18] 46.2 575 69.2 748 78.1 58.2 652 72.7 76.5 78.7
GNN Denoising AutoEncoder [Gidaris e al. 197 48.0 59.7 70.3 75.0 77.8 59.1 66.3 73.2 76.1 77.5

Table 2: Top-5 accuracies on the novel and on all classes for the ImageNet-FS benchmark [13]. To report results we use 100 test episodes.

Exploiting inter-class correlations (attention, GNN) leads to better performance

.
Y

Source: “Generating classification weights with GNN denoising auto encoders for few-shot learning ”, Gidaris et al. 18



Learn to generate classification weights

(Almost) simple training:

= Single classification network, standard supervised pre-training
= Meta-training: only for the parameter generating module

More flexible: unified recognition of both base and novel classes
= Same test speed as typical classification networks

* The parameter generating module might be data hungry
= Constrained by quality of pre-trained representations
= Similar to metric learning based methods



Learning Weights with Attention Attractor Networks

Optimization-based meta-learning with dynamic regularization:

W = mmi/n CrossEntropyLoss(S, W) + Z R(w; — wih)
i

= The meta-learner is trained to predict (using S;) priors w?* so that the optimized weights W would
minimize the classification loss on the query set Q

fast weights modified prototypes
® attractors attended base classes
base class weights R base class weights
prototypes o © . prototypes
o 200, o o o %o o
"—‘\2 CIL?TS) Q. & 50 5° o “%i&gf
w=o 00 %5 0 "o °° o 4 B
o o . o "ﬁ ® .o 8
o 2 uo ® @0 OQJ- Q
o C§
o @
(a) Ours (b) LwoF [9]

Figure 3: Visualization of a 5-shot 64+5-way episode using PCA. Left: Our attractor model learns to
“pull” prototypes (large colored circles) towards base class weights (white circles). We visualize the
trajectories during episodic training; Right: Dynamic few-shot learning without forgetting [9].

“Incremental Few-Shot Learning with Attention Attractor Networks”, Ren et al. 19
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= Few-shot visual learning is important

= But, common few-shot benchmarks are insufficient
= Omniglot: saturated
= MinilmageNet: with proper tuning all methods achieve similar results, not realistic



Final notes

= Few-shot visual learning is important

= But, common few-shot benchmarks are insufficient
= Omniglot: saturated
= MinilmageNet: with enough tuning all methods achieve similar results, not realistic setting

= More realistic benchmarks:
= “Low-shot Visual Recognition by Shrinking and Hallucinating Features”, Hariharan et al. 17
» “Few-Shot Learning with Localization in Realistic Settings”, Wertheimer et al. 19
= “Large-Scale Long-Tailed Recognition in an Open World”, Liu et al. 19

» “Meta-Dataset: A dataset for datasets for learning to learn from few examples”,
Triantafillou et al. 19



A Closer Look to Few-Shot Classification

75%
65%
55%

45%

Figure 3: Few-shot classification accuracy vs. backbone depth.
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different methods diminish as the backbone gets deeper. In mini-ImageNet 5-shot, some
meta-learning methods are even beaten by Baseline with a deeper backbone. (Please refer to

CUB mini-ImageNet

Method 1-shot S-shot 1-shot S-shot

Baseline 47.124+0.74 6416 +£0.71 42114+0.71 62.53 £0.69
Baseline++ 60.53+0.83 7934 +0.61 4824+0.75 66.43 +0.63
MatchingNet Vinvals et al. (2016)  60.52 +0.88 7529+ 0.75 48.14 £0.78 63.48 +0.66
ProtoNet Snell et al. (2017) 5046+ 0.88 7639+0.64 44424084 64.24 +0.72
MAML Finn et al. (2017) 54734+097 7575+£0.76 4647+082 62.71 £0.71
RelationNet Sung et al. (2018) 62344+ 094 7784 +£0.68 4931+085 66.60+0.69

“A Closer Look to Few-shot classification”,
Chenetal. 19

In the CUB dataset, gaps among

Baseline:
pre-training + fine-tuning last layer

Baseline++:
cosine classifier

* Meta-learning algorithms and network designs of growing complexity, but

= Well-tuned baselines: often on par / better than SoTA meta-learning methods
= Baselines: scale better with deeper backbones



A different direction

Focus on pre-training richer representations
» Representations that know more about the world can adapt better

= Leveraging self-supervision (see next talk by Relja and Andrey)

“Boosting few-shot visual learning with self-supervision”,
Gidaris et al. 19

-] - ~
Objectelagsitier Supervised loss Ly, for
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c@) few-shot classification
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When does self-supervision improve few-shot learning?”,

Suetal 19
:i
supervised label
” Flotaﬂon(eswo)
shared feature backbone e

“Learning generalizable representations via diverse supervision”, Pang et al. 19
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Also:

“Charting the right manifold: manifold mixup for few-shot learning”, Mangla et al. 20
“Rethinking few-shot image classification: a good embedding is all you need?”, Tian et al. 20



Not covered because of time constraints

= Semi-supervised few-shot / meta learning:
= “Low-shot learning with large-scale diffusion”, Douze et al. 18
= “Meta-learning for semi-supervised few-shot classification”, Triantafillou et al. 18

» Few-shot/ metalearning with noise labels:
= “Graph convolutional networks for learning with few clean and many noisy labels”, Iscen et al 20

» Learning with imbalanced datasets (many-shot and few-shot classes):
= “Learning to model the tail”’, Wang et al. 17
= “large-scale long-tailed recognition in an open world”, Liu et al. 19
= “Decoupling representation and classifier for long-tailed recognition”, Kang et al. 20

= Few-shot learning beyond image classification:
» “Few-shot object detection via feature reweighting”, Kang et al. 19
» “Meta-learning to detect rare objects”, Wang et al. 19
= “Few-shot semantic segmentation with prototype learning”, Dong et al. 18
= “PANet: Few-shot image semantic segmentation with prototype alignment”, Wang et al. 19
= “Tracking by Instance Detection: A Meta-Learning Approach”, Wang et al. 20



The end



